{"title":"Existence and regularity for global weak solutions to the 𝜆-family water wave equations","authors":"Geng Chen, Yannan Shen, Shihui Zhu","doi":"10.1090/qam/1660","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we prove the global existence of Hölder continuous solutions for the Cauchy problem of a family of partial differential equations, named as <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"lamda\">\n <mml:semantics>\n <mml:mi>λ<!-- λ --></mml:mi>\n <mml:annotation encoding=\"application/x-tex\">\\lambda</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-family equations, where <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"lamda\">\n <mml:semantics>\n <mml:mi>λ<!-- λ --></mml:mi>\n <mml:annotation encoding=\"application/x-tex\">\\lambda</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is the power of nonlinear wave speed. The <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"lamda\">\n <mml:semantics>\n <mml:mi>λ<!-- λ --></mml:mi>\n <mml:annotation encoding=\"application/x-tex\">\\lambda</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-family equations include Camassa-Holm equation (<inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"lamda equals 1\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>λ<!-- λ --></mml:mi>\n <mml:mo>=</mml:mo>\n <mml:mn>1</mml:mn>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\lambda =1</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>) and Novikov equation (<inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"lamda equals 2\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>λ<!-- λ --></mml:mi>\n <mml:mo>=</mml:mo>\n <mml:mn>2</mml:mn>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\lambda =2</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>) modelling water waves, where solutions generically form finite time cusp singularities, or, in other words, show wave breaking phenomenon. The global energy conservative solution we construct is Hölder continuous with exponent <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"1 minus StartFraction 1 Over 2 lamda EndFraction\">\n <mml:semantics>\n <mml:mrow>\n <mml:mn>1</mml:mn>\n <mml:mo>−<!-- − --></mml:mo>\n <mml:mfrac>\n <mml:mn>1</mml:mn>\n <mml:mrow>\n <mml:mn>2</mml:mn>\n <mml:mi>λ<!-- λ --></mml:mi>\n </mml:mrow>\n </mml:mfrac>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">1- \\frac {1}{2\\lambda }</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. The existence result also paves the way for the future study on uniqueness and Lipschitz continuous dependence.</p>","PeriodicalId":20964,"journal":{"name":"Quarterly of Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2023-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quarterly of Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/qam/1660","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we prove the global existence of Hölder continuous solutions for the Cauchy problem of a family of partial differential equations, named as λ\lambda-family equations, where λ\lambda is the power of nonlinear wave speed. The λ\lambda-family equations include Camassa-Holm equation (λ=1\lambda =1) and Novikov equation (λ=2\lambda =2) modelling water waves, where solutions generically form finite time cusp singularities, or, in other words, show wave breaking phenomenon. The global energy conservative solution we construct is Hölder continuous with exponent 1−12λ1- \frac {1}{2\lambda }. The existence result also paves the way for the future study on uniqueness and Lipschitz continuous dependence.
期刊介绍:
The Quarterly of Applied Mathematics contains original papers in applied mathematics which have a close connection with applications. An author index appears in the last issue of each volume.
This journal, published quarterly by Brown University with articles electronically published individually before appearing in an issue, is distributed by the American Mathematical Society (AMS). In order to take advantage of some features offered for this journal, users will occasionally be linked to pages on the AMS website.