Breast Cancer Classification With Microarray Gene Expression Data Based on Improved Whale Optimization Algorithm

IF 0.8 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
S. Devi, Prithiviraj K.
{"title":"Breast Cancer Classification With Microarray Gene Expression Data Based on Improved Whale Optimization Algorithm","authors":"S. Devi, Prithiviraj K.","doi":"10.4018/ijsir.317091","DOIUrl":null,"url":null,"abstract":"Breast cancer is one of the most common and dangerous cancer types in women worldwide. Since it is generally a genetic disease, microarray technology-based cancer prediction is technically significant among lot of diagnosis methods. The microarray gene expression data contains fewer samples with many redundant and noisy genes. It leads to inaccurate diagnose and low prediction accuracy. To overcome these difficulties, this paper proposes an Improved Whale Optimization Algorithm (IWOA) for wrapper based feature selection in gene expression data. The proposed IWOA incorporates modified cross over and mutation operations to enhance the exploration and exploitation of classical WOA. The proposed IWOA adapts multiobjective fitness function, which simultaneously balance between minimization of error rate and feature selection. The experimental analysis demonstrated that, the proposed IWOA with Gradient Boost Classifier (GBC) achieves high classification accuracy of 97.7% with minimum subset of features and also converges quickly for the breast cancer dataset.","PeriodicalId":44265,"journal":{"name":"International Journal of Swarm Intelligence Research","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2023-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Swarm Intelligence Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijsir.317091","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 2

Abstract

Breast cancer is one of the most common and dangerous cancer types in women worldwide. Since it is generally a genetic disease, microarray technology-based cancer prediction is technically significant among lot of diagnosis methods. The microarray gene expression data contains fewer samples with many redundant and noisy genes. It leads to inaccurate diagnose and low prediction accuracy. To overcome these difficulties, this paper proposes an Improved Whale Optimization Algorithm (IWOA) for wrapper based feature selection in gene expression data. The proposed IWOA incorporates modified cross over and mutation operations to enhance the exploration and exploitation of classical WOA. The proposed IWOA adapts multiobjective fitness function, which simultaneously balance between minimization of error rate and feature selection. The experimental analysis demonstrated that, the proposed IWOA with Gradient Boost Classifier (GBC) achieves high classification accuracy of 97.7% with minimum subset of features and also converges quickly for the breast cancer dataset.
基于改进鲸鱼优化算法的微阵列基因表达数据乳腺癌分类
癌症是全世界女性最常见、最危险的癌症类型之一。由于它通常是一种遗传性疾病,基于微阵列技术的癌症预测在许多诊断方法中具有重要的技术意义。微阵列基因表达数据包含较少的样本,具有许多冗余和嘈杂的基因。导致诊断不准确,预测准确率低。为了克服这些困难,本文提出了一种改进的鲸鱼优化算法(IWOA),用于基因表达数据中基于包装的特征选择。所提出的IWOA结合了改进的交叉和突变操作,以加强对经典WOA的探索和开发。所提出的IWOA采用了多目标适应度函数,该函数同时平衡了误差率最小化和特征选择。实验分析表明,所提出的具有梯度提升分类器(GBC)的IWOA在最小特征子集的情况下实现了97.7%的高分类精度,并且对于癌症数据集也快速收敛。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Swarm Intelligence Research
International Journal of Swarm Intelligence Research COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-
CiteScore
2.50
自引率
0.00%
发文量
76
期刊介绍: The mission of the International Journal of Swarm Intelligence Research (IJSIR) is to become a leading international and well-referred journal in swarm intelligence, nature-inspired optimization algorithms, and their applications. This journal publishes original and previously unpublished articles including research papers, survey papers, and application papers, to serve as a platform for facilitating and enhancing the information shared among researchers in swarm intelligence research areas ranging from algorithm developments to real-world applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信