Unitless Frobenius Quantales

IF 0.6 4区 数学 Q3 MATHEMATICS
Cédric de Lacroix, Luigi Santocanale
{"title":"Unitless Frobenius Quantales","authors":"Cédric de Lacroix,&nbsp;Luigi Santocanale","doi":"10.1007/s10485-022-09699-5","DOIUrl":null,"url":null,"abstract":"<div><p>It is often stated that Frobenius quantales are necessarily unital. By taking negation as a primitive operation, we can define Frobenius quantales that may not have a unit. We develop the elementary theory of these structures and show, in particular, how to define nuclei whose quotients are Frobenius quantales. This yields a phase semantics and a representation theorem via phase quantales. Important examples of these structures arise from Raney’s notion of tight Galois connection: tight endomaps of a complete lattice always form a Girard quantale which is unital if and only if the lattice is completely distributive. We give a characterisation and an enumeration of tight endomaps of the diamond lattices <span>\\(M_n\\)</span> and exemplify the Frobenius structure on these maps. By means of phase semantics, we exhibit analogous examples built up from trace class operators on an infinite dimensional Hilbert space. Finally, we argue that units cannot be properly added to Frobenius quantales: every possible extention to a unital quantale fails to preserve negations.</p></div>","PeriodicalId":7952,"journal":{"name":"Applied Categorical Structures","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2022-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10485-022-09699-5.pdf","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Categorical Structures","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10485-022-09699-5","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

It is often stated that Frobenius quantales are necessarily unital. By taking negation as a primitive operation, we can define Frobenius quantales that may not have a unit. We develop the elementary theory of these structures and show, in particular, how to define nuclei whose quotients are Frobenius quantales. This yields a phase semantics and a representation theorem via phase quantales. Important examples of these structures arise from Raney’s notion of tight Galois connection: tight endomaps of a complete lattice always form a Girard quantale which is unital if and only if the lattice is completely distributive. We give a characterisation and an enumeration of tight endomaps of the diamond lattices \(M_n\) and exemplify the Frobenius structure on these maps. By means of phase semantics, we exhibit analogous examples built up from trace class operators on an infinite dimensional Hilbert space. Finally, we argue that units cannot be properly added to Frobenius quantales: every possible extention to a unital quantale fails to preserve negations.

Abstract Image

Unitless Frobenius Quantales
人们常说,弗罗贝尼厄斯量子必然是统一的。通过将否定作为一种基本运算,我们可以定义可能没有单位的Frobenius量子。我们发展了这些结构的基本理论,并特别说明了如何定义商为Frobenius量子的原子核。这产生了一个相位语义和一个通过相位量子的表示定理。这些结构的重要例子来自Raney的紧伽罗瓦连接的概念:当且仅当晶格是完全分布的时,完全晶格的紧内映射总是形成一个吉拉德量子,该量子是一元的。我们给出了金刚石晶格\(M_n\)的紧密内图的特征和枚举,并举例说明了这些图上的Frobenius结构。利用相语义,我们展示了在无限维希尔伯特空间上由迹类算子建立的类似例子。最后,我们论证了单位不能被适当地添加到弗罗贝纽斯量子中:对单位量子的每一个可能的扩展都不能保持否定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
16.70%
发文量
29
审稿时长
>12 weeks
期刊介绍: Applied Categorical Structures focuses on applications of results, techniques and ideas from category theory to mathematics, physics and computer science. These include the study of topological and algebraic categories, representation theory, algebraic geometry, homological and homotopical algebra, derived and triangulated categories, categorification of (geometric) invariants, categorical investigations in mathematical physics, higher category theory and applications, categorical investigations in functional analysis, in continuous order theory and in theoretical computer science. In addition, the journal also follows the development of emerging fields in which the application of categorical methods proves to be relevant. Applied Categorical Structures publishes both carefully refereed research papers and survey papers. It promotes communication and increases the dissemination of new results and ideas among mathematicians and computer scientists who use categorical methods in their research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信