X. Zou, Yuting Zhou, Yuhang Zhou, Yukai Xiao, D. Yuan, Gang Xiang
{"title":"Research on fatigue life of all-terrain vehicle control arm based on measured load spectrum","authors":"X. Zou, Yuting Zhou, Yuhang Zhou, Yukai Xiao, D. Yuan, Gang Xiang","doi":"10.12688/cobot.17566.1","DOIUrl":null,"url":null,"abstract":"Background: All-terrain vehicles are mostly used in poor driving environments. A key part of the suspension mechanism of all-terrain vehicles, the lower control arm, bears various loads when the vehicle is driving. This component is prone to be fatigue and failure, which affects the performance of the entire vehicle. Therefore, in order to improve the performance of all-terrain vehicles, the fatigue life of the lower control arm was studied based on the measured force load spectrum. Methods: Firstly, the finite element model of the lower control arm is established, the free modal simulation analysis is carried out, and the experimental research is carried out by building a modal test system. Then combining the calculated modal and experimental modal results, the finite element model is verified. Next, through the road load spectrum acquisition test in the automobile proving ground, the force time history of the lower control arm is obtained, and the signal is processed and analyzed to verify the reliability of the force load signal. On this basis, the boundary constraints of the lower control arm are established based on the actual working conditions of the all-terrain vehicle, and the dynamics simulation analysis is carried out with the measured force as input. Finally, according to stress-strain signal in dynamic analysis results, combining the modified local stress-strain method and the Landgrave damage criterion, the fatigue life of the lower control arm is calculated. Results: The minimum fatigue cycle life of the lower control arm on the test roads is 3.56×105 km, and its fatigue life meets the design and use requirements. Conclusions: The result shows that based on the actual driving load spectrum, the actual driving fatigue life can be calculated and forecasted more accurately.","PeriodicalId":29807,"journal":{"name":"Cobot","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cobot","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12688/cobot.17566.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Background: All-terrain vehicles are mostly used in poor driving environments. A key part of the suspension mechanism of all-terrain vehicles, the lower control arm, bears various loads when the vehicle is driving. This component is prone to be fatigue and failure, which affects the performance of the entire vehicle. Therefore, in order to improve the performance of all-terrain vehicles, the fatigue life of the lower control arm was studied based on the measured force load spectrum. Methods: Firstly, the finite element model of the lower control arm is established, the free modal simulation analysis is carried out, and the experimental research is carried out by building a modal test system. Then combining the calculated modal and experimental modal results, the finite element model is verified. Next, through the road load spectrum acquisition test in the automobile proving ground, the force time history of the lower control arm is obtained, and the signal is processed and analyzed to verify the reliability of the force load signal. On this basis, the boundary constraints of the lower control arm are established based on the actual working conditions of the all-terrain vehicle, and the dynamics simulation analysis is carried out with the measured force as input. Finally, according to stress-strain signal in dynamic analysis results, combining the modified local stress-strain method and the Landgrave damage criterion, the fatigue life of the lower control arm is calculated. Results: The minimum fatigue cycle life of the lower control arm on the test roads is 3.56×105 km, and its fatigue life meets the design and use requirements. Conclusions: The result shows that based on the actual driving load spectrum, the actual driving fatigue life can be calculated and forecasted more accurately.
期刊介绍:
Cobot is a rapid multidisciplinary open access publishing platform for research focused on the interdisciplinary field of collaborative robots. The aim of Cobot is to enhance knowledge and share the results of the latest innovative technologies for the technicians, researchers and experts engaged in collaborative robot research. The platform will welcome submissions in all areas of scientific and technical research related to collaborative robots, and all articles will benefit from open peer review.
The scope of Cobot includes, but is not limited to:
● Intelligent robots
● Artificial intelligence
● Human-machine collaboration and integration
● Machine vision
● Intelligent sensing
● Smart materials
● Design, development and testing of collaborative robots
● Software for cobots
● Industrial applications of cobots
● Service applications of cobots
● Medical and health applications of cobots
● Educational applications of cobots
As well as research articles and case studies, Cobot accepts a variety of article types including method articles, study protocols, software tools, systematic reviews, data notes, brief reports, and opinion articles.