Frieze patterns over integers and other subsets of the complex numbers

IF 0.6 2区 数学 Q3 MATHEMATICS
M. Cuntz, T. Holm
{"title":"Frieze patterns over integers and other subsets of the complex numbers","authors":"M. Cuntz, T. Holm","doi":"10.4171/JCA/29","DOIUrl":null,"url":null,"abstract":"We study (tame) frieze patterns over subsets of the complex numbers, with particular emphasis on the corresponding quiddity cycles. We provide new general transformations for quiddity cycles of frieze patterns. As one application, we present a combinatorial model for obtaining the quiddity cycles of all tame frieze patterns over the integers (with zero entries allowed), generalising the classic Conway-Coxeter theory. This model is thus also a model for the set of specializations of cluster algebras of Dynkin type $A$ in which all cluster variables are integers. \nMoreover, we address the question of whether for a given height there are only finitely many non-zero frieze patterns over a given subset $R$ of the complex numbers. Under certain conditions on $R$, we show upper bounds for the absolute values of entries in the quiddity cycles. As a consequence, we obtain that if $R$ is a discrete subset of the complex numbers then for every height there are only finitely many non-zero frieze patterns over $R$. Using this, we disprove a conjecture of Fontaine, by showing that for a complex $d$-th root of unity $\\zeta_d$ there are only finitely many non-zero frieze patterns for a given height over $R=\\mathbb{Z}[\\zeta_d]$ if and only if $d\\in \\{1,2,3,4,6\\}$.","PeriodicalId":48483,"journal":{"name":"Journal of Combinatorial Algebra","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2017-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4171/JCA/29","citationCount":"23","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Algebra","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/JCA/29","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 23

Abstract

We study (tame) frieze patterns over subsets of the complex numbers, with particular emphasis on the corresponding quiddity cycles. We provide new general transformations for quiddity cycles of frieze patterns. As one application, we present a combinatorial model for obtaining the quiddity cycles of all tame frieze patterns over the integers (with zero entries allowed), generalising the classic Conway-Coxeter theory. This model is thus also a model for the set of specializations of cluster algebras of Dynkin type $A$ in which all cluster variables are integers. Moreover, we address the question of whether for a given height there are only finitely many non-zero frieze patterns over a given subset $R$ of the complex numbers. Under certain conditions on $R$, we show upper bounds for the absolute values of entries in the quiddity cycles. As a consequence, we obtain that if $R$ is a discrete subset of the complex numbers then for every height there are only finitely many non-zero frieze patterns over $R$. Using this, we disprove a conjecture of Fontaine, by showing that for a complex $d$-th root of unity $\zeta_d$ there are only finitely many non-zero frieze patterns for a given height over $R=\mathbb{Z}[\zeta_d]$ if and only if $d\in \{1,2,3,4,6\}$.
整数和复数的其他子集上的Frieze模式
我们在复数的子集上研究(驯服)frieze模式,特别强调相应的快性循环。我们提供了一种新的通用变换方法来求解薄纱图案的快度循环。作为一个应用,我们推广了经典的Conway-Coxeter理论,给出了一种组合模型,用于获得整数上(允许零项)的所有单调模式的快性循环。因此,该模型也是Dynkin型聚类代数的专门化集的模型,其中所有的聚类变量都是整数。此外,我们还解决了一个问题,即对于给定的高度,在给定的复数子集$R$上是否只有有限多个非零frieze模式。在R上的某些条件下,我们给出了快性循环中各项绝对值的上界。因此,我们得到,如果$R$是复数的离散子集,那么对于每个高度,$R$上只有有限多个非零的frieze图案。利用这一点,我们证明了对于一个复数$d$-单位$ zeta_d$的根$R=\mathbb{Z}[\zeta_d]$当且仅当$d\in \{1,2,3,4,6\}$,对于给定高度只有有限多个非零的带状图案,从而证明了Fontaine的一个猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.20
自引率
0.00%
发文量
9
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信