{"title":"REDD+: The Opportunity for Sustainable Management in Zagros Forests","authors":"Sahar Delpasand, R. Maleknia, H. Naghavi","doi":"10.1080/10549811.2022.2130359","DOIUrl":null,"url":null,"abstract":"ABSTRACT The Reducing Emissions from Deforestation and Degradation (REDD+) projects aim to prevent deforestation and greenhouse gas emissions as a policy to combat climate changes. This article evaluates changes to the Zagros’ Forest cover in 20 years and predicts the implications of implementing the REDD+ project in the next two decades. Using Landsat Forest cover maps and a logistic regression model the potential for forest cover transfer to non-forest regions was modeled to identify regions at risk of deforestation. A Markov chain was implemented to predict the changes. Receiver Operating Characteristics (ROC) was employed for validation, and the Voluntary Carbon Standard (VCS) was utilized to model the REDD+ project baseline to predict the forest cover changes. The findings indicate, 37,809 hectares of forest cover were lost in the past 20 years and with this trend, the amount of greenhouse gas emissions will increase. However, implementing the REDD+ project can prevent the release of 1,714,534.13 tCO2e. Therefore, this deteriorating forest possesses the potential to reduce CO2 emissions by preventing deforestation, identifying deforestation-prone areas and implementing the REDD+ project utilizing the methodology presented. Climate change mitigation, carbon sequestration, and biodiversity protection are just a few of the benefits of REDD+ projects that can aid sustainable forest management","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/10549811.2022.2130359","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
ABSTRACT The Reducing Emissions from Deforestation and Degradation (REDD+) projects aim to prevent deforestation and greenhouse gas emissions as a policy to combat climate changes. This article evaluates changes to the Zagros’ Forest cover in 20 years and predicts the implications of implementing the REDD+ project in the next two decades. Using Landsat Forest cover maps and a logistic regression model the potential for forest cover transfer to non-forest regions was modeled to identify regions at risk of deforestation. A Markov chain was implemented to predict the changes. Receiver Operating Characteristics (ROC) was employed for validation, and the Voluntary Carbon Standard (VCS) was utilized to model the REDD+ project baseline to predict the forest cover changes. The findings indicate, 37,809 hectares of forest cover were lost in the past 20 years and with this trend, the amount of greenhouse gas emissions will increase. However, implementing the REDD+ project can prevent the release of 1,714,534.13 tCO2e. Therefore, this deteriorating forest possesses the potential to reduce CO2 emissions by preventing deforestation, identifying deforestation-prone areas and implementing the REDD+ project utilizing the methodology presented. Climate change mitigation, carbon sequestration, and biodiversity protection are just a few of the benefits of REDD+ projects that can aid sustainable forest management
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.