{"title":"The Wide Diameter and Fault Diameter of Exchanged Crossed Cube","authors":"Baohua Niu, Shuming Zhou, Tao Tian, Qifan Zhang","doi":"10.1142/s0129054123500107","DOIUrl":null,"url":null,"abstract":"The fault diameter and wide diameter are commonly used to measure the fault tolerance and transmission delay of interconnection networks beyond traditional diameter. The [Formula: see text]-wide diameter of graph [Formula: see text], denoted by [Formula: see text], is the minimum integer [Formula: see text] such that there exist at least [Formula: see text] internally vertex disjoint paths of length at most [Formula: see text] for any two distinct vertices in [Formula: see text]. The [Formula: see text]-fault diameter of graph [Formula: see text], denoted by [Formula: see text], is the maximum diameter of the survival graph obtained by deleting at most [Formula: see text] vertices in [Formula: see text]. The exchanged crossed cube, as a compounded interconnection network denoted by [Formula: see text], holds the desirable properties of both crossed cube and exchanged hypercube, while achieving a better balanced between cost and performance of the parallel computing systems. In this paper, we construct [Formula: see text] internally vertex disjoint paths between any two distinct vertices of [Formula: see text]. Moreover, we determine the upper and lower bounds of [Formula: see text]-wide diameter and [Formula: see text]-fault diameter of [Formula: see text], i.e., [Formula: see text], which shows that the exchanged crossed cube has better efficiency and reliability than that of the exchanged hypercube.","PeriodicalId":50323,"journal":{"name":"International Journal of Foundations of Computer Science","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2023-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Foundations of Computer Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1142/s0129054123500107","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
The fault diameter and wide diameter are commonly used to measure the fault tolerance and transmission delay of interconnection networks beyond traditional diameter. The [Formula: see text]-wide diameter of graph [Formula: see text], denoted by [Formula: see text], is the minimum integer [Formula: see text] such that there exist at least [Formula: see text] internally vertex disjoint paths of length at most [Formula: see text] for any two distinct vertices in [Formula: see text]. The [Formula: see text]-fault diameter of graph [Formula: see text], denoted by [Formula: see text], is the maximum diameter of the survival graph obtained by deleting at most [Formula: see text] vertices in [Formula: see text]. The exchanged crossed cube, as a compounded interconnection network denoted by [Formula: see text], holds the desirable properties of both crossed cube and exchanged hypercube, while achieving a better balanced between cost and performance of the parallel computing systems. In this paper, we construct [Formula: see text] internally vertex disjoint paths between any two distinct vertices of [Formula: see text]. Moreover, we determine the upper and lower bounds of [Formula: see text]-wide diameter and [Formula: see text]-fault diameter of [Formula: see text], i.e., [Formula: see text], which shows that the exchanged crossed cube has better efficiency and reliability than that of the exchanged hypercube.
期刊介绍:
The International Journal of Foundations of Computer Science is a bimonthly journal that publishes articles which contribute new theoretical results in all areas of the foundations of computer science. The theoretical and mathematical aspects covered include:
- Algebraic theory of computing and formal systems
- Algorithm and system implementation issues
- Approximation, probabilistic, and randomized algorithms
- Automata and formal languages
- Automated deduction
- Combinatorics and graph theory
- Complexity theory
- Computational biology and bioinformatics
- Cryptography
- Database theory
- Data structures
- Design and analysis of algorithms
- DNA computing
- Foundations of computer security
- Foundations of high-performance computing