Cauchy-Riemann ̄∂-equations with some applications

IF 0.5 Q3 MATHEMATICS
J. Xiao, Cheng Yuan
{"title":"Cauchy-Riemann ̄∂-equations with some applications","authors":"J. Xiao, Cheng Yuan","doi":"10.1515/coma-2021-0134","DOIUrl":null,"url":null,"abstract":"Abstract This paper shows that given 0 < p < 3 and a complex Borel measure µ on the unit disk 𝔻 the inhomogeneous Cauchy-Riemann ̄∂-equation ∂z¯u(z)=dμ(z)(2πi)-1dz¯∧dz {\\partial _{\\bar z}}u\\left( z \\right) = {{d\\mu \\left( z \\right)} \\over {{{\\left( {2\\pi i} \\right)}^{ - 1}}d\\bar z \\wedge dz}} − a complex Gauss curvature of the weighted disk (𝔻, µ) ᗄ z ∈ 𝔻, has a distributional solution (initially defined on ̄𝔻 = 𝔻 ∪ 𝕋) u ∈ ℒ2,p(𝕋) (formed of: (i) Morrey’s space M2,0<p<1(𝕋); (ii) John-Nirenberg’s space BMO(𝕋) = 𝒧2,1(𝕋); (iii) Hölder-Lipschitz’s space C C0<p-12<1 {C^{0 < {{p - 1} \\over 2} < 1}} (𝕋)), if and only if 𝔻¯∋z↦∫𝔻(1-zw¯)-1dμ¯(w) \\mathbb{D} z \\mapsto \\int\\limits_\\mathbb{D} {{{\\left( {1 - z\\bar w} \\right)}^{ - 1}}d\\bar \\mu } \\left( w \\right) belongs to the analytic Campanato space ϱ𝒜p(𝔻), thereby not only extending Carleson’s corona & Wolff’s ideal theorems to the algebra M ϱ𝒜p(𝔻) of all analytic pointwise multiplications of ϱ𝒜p(𝔻), but quadratically generalizing Brownawell’s result on Hilbert’s Nullstellensatz for the analytic polynomial class 𝒫(ℂ).","PeriodicalId":42393,"journal":{"name":"Complex Manifolds","volume":"9 1","pages":"170 - 191"},"PeriodicalIF":0.5000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complex Manifolds","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/coma-2021-0134","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

Abstract

Abstract This paper shows that given 0 < p < 3 and a complex Borel measure µ on the unit disk 𝔻 the inhomogeneous Cauchy-Riemann ̄∂-equation ∂z¯u(z)=dμ(z)(2πi)-1dz¯∧dz {\partial _{\bar z}}u\left( z \right) = {{d\mu \left( z \right)} \over {{{\left( {2\pi i} \right)}^{ - 1}}d\bar z \wedge dz}} − a complex Gauss curvature of the weighted disk (𝔻, µ) ᗄ z ∈ 𝔻, has a distributional solution (initially defined on ̄𝔻 = 𝔻 ∪ 𝕋) u ∈ ℒ2,p(𝕋) (formed of: (i) Morrey’s space M2,0
柯西黎曼∂方程的一些应用
摘要本文证明了给定0
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Complex Manifolds
Complex Manifolds MATHEMATICS-
CiteScore
1.30
自引率
20.00%
发文量
14
审稿时长
25 weeks
期刊介绍: Complex Manifolds is devoted to the publication of results on these and related topics: Hermitian geometry, Kähler and hyperkähler geometry Calabi-Yau metrics, PDE''s on complex manifolds Generalized complex geometry Deformations of complex structures Twistor theory Geometric flows on complex manifolds Almost complex geometry Quaternionic geometry Geometric theory of analytic functions Holomorphic dynamics Several complex variables Dolbeault cohomology CR geometry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信