Tensor products of infinite dimensional modules in the BGG category of a quantized simple Lie algebra of type ADE

IF 0.5 Q3 MATHEMATICS
Zhaoting Wei̇
{"title":"Tensor products of infinite dimensional modules in the BGG category of a quantized simple Lie algebra of type ADE","authors":"Zhaoting Wei̇","doi":"10.24330/ieja.1357059","DOIUrl":null,"url":null,"abstract":"We consider the BGG category $\\O$ of a quantized universal enveloping algebra $U_q(\\mathfrak{g})$. It is well-known that $M\\otimes N\\in \\O$ if $M$ or $N$ is finite dimensional. When $\\mathfrak{g}$ is simple and of type ADE, we prove in this paper that $M\\otimes N\\notin \\O$ if $M$ and $N$ are both infinite dimensional.","PeriodicalId":43749,"journal":{"name":"International Electronic Journal of Algebra","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2023-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Electronic Journal of Algebra","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24330/ieja.1357059","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We consider the BGG category $\O$ of a quantized universal enveloping algebra $U_q(\mathfrak{g})$. It is well-known that $M\otimes N\in \O$ if $M$ or $N$ is finite dimensional. When $\mathfrak{g}$ is simple and of type ADE, we prove in this paper that $M\otimes N\notin \O$ if $M$ and $N$ are both infinite dimensional.
ADE型量子化单李代数BGG范畴中无穷维模的张量积
我们考虑一个量子化的泛包络代数$U_q(\mathfrak{g})$的BGG范畴$\O$。众所周知,如果$M$或$N$是有限维的,则$M\otimes N\in\O$。当$\mathfrak{g}$是简单的并且是ADE类型时,我们在本文中证明了如果$M$和$N$都是无穷维的$M\otimes N\notin\O$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.90
自引率
16.70%
发文量
36
审稿时长
36 weeks
期刊介绍: The International Electronic Journal of Algebra is published twice a year. IEJA is reviewed by Mathematical Reviews, MathSciNet, Zentralblatt MATH, Current Mathematical Publications. IEJA seeks previously unpublished papers that contain: Module theory Ring theory Group theory Algebras Comodules Corings Coalgebras Representation theory Number theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信