{"title":"Tensor products of infinite dimensional modules in the BGG category of a quantized simple Lie algebra of type ADE","authors":"Zhaoting Wei̇","doi":"10.24330/ieja.1357059","DOIUrl":null,"url":null,"abstract":"We consider the BGG category $\\O$ of a quantized universal enveloping algebra $U_q(\\mathfrak{g})$. It is well-known that $M\\otimes N\\in \\O$ if $M$ or $N$ is finite dimensional. When $\\mathfrak{g}$ is simple and of type ADE, we prove in this paper that $M\\otimes N\\notin \\O$ if $M$ and $N$ are both infinite dimensional.","PeriodicalId":43749,"journal":{"name":"International Electronic Journal of Algebra","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2023-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Electronic Journal of Algebra","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24330/ieja.1357059","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We consider the BGG category $\O$ of a quantized universal enveloping algebra $U_q(\mathfrak{g})$. It is well-known that $M\otimes N\in \O$ if $M$ or $N$ is finite dimensional. When $\mathfrak{g}$ is simple and of type ADE, we prove in this paper that $M\otimes N\notin \O$ if $M$ and $N$ are both infinite dimensional.
期刊介绍:
The International Electronic Journal of Algebra is published twice a year. IEJA is reviewed by Mathematical Reviews, MathSciNet, Zentralblatt MATH, Current Mathematical Publications. IEJA seeks previously unpublished papers that contain: Module theory Ring theory Group theory Algebras Comodules Corings Coalgebras Representation theory Number theory.