John H. Boyle, Marianne Espeland, Szabolcs Sáfián, Robert Ducarme, Alan J. Gardiner, James W. Coleman, Alan Heath, Stewart Fisher, Steve C. Collins, Dino J. Martins, Kwaku Aduse-Poku, Michel Libert, Even Dankowicz, Akito Y. Kawahara, David J. Lohman, Naomi E. Pierce
{"title":"Phylogeny of the Poritiinae (Lepidoptera: Lycaenidae), butterflies with ant associations and unusual lichenivorous diets","authors":"John H. Boyle, Marianne Espeland, Szabolcs Sáfián, Robert Ducarme, Alan J. Gardiner, James W. Coleman, Alan Heath, Stewart Fisher, Steve C. Collins, Dino J. Martins, Kwaku Aduse-Poku, Michel Libert, Even Dankowicz, Akito Y. Kawahara, David J. Lohman, Naomi E. Pierce","doi":"10.1111/syen.12585","DOIUrl":null,"url":null,"abstract":"<p>The Poritiinae are a diverse subfamily of lycaenid butterflies with about 700 species divided into two major groups: the Asian endemic tribe Poritiini, and the African endemic tribe Liptenini. Among these, the Liptenini are notable for their lichenivorous diet and the strong but apparently non-mutualistic ant associations of many species. We present the first molecular phylogeny for this subfamily, based on data from 14 gene regions, and including 218 representatives from 177 taxa (approximately 25% of species) in 50 of the 58 (86%) recognized genera. From this analysis, we confirm the division of the subfamily into two tribes, and we rearrange the Liptenini tribe into six subtribes, Durbaniina, Pentilina, Liptenina, Iridanina and Epitolina, plus a new tribe, Cooksoniina <b>subtrib. n.</b>, to fill a gap in the nomenclature revealed by the phylogenetic analysis. We also point to several genera in need of further taxonomic revision. Ancestral range reconstruction could not infer the range of the common ancestor of the Poritiinae; however, the common ancestor of the Poritiini was likely Asian, while that of the Liptenini was likely African, with subsequent narrowing of ranges in several lineages.</p>","PeriodicalId":22126,"journal":{"name":"Systematic Entomology","volume":"48 3","pages":"422-433"},"PeriodicalIF":4.7000,"publicationDate":"2023-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/syen.12585","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Systematic Entomology","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/syen.12585","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The Poritiinae are a diverse subfamily of lycaenid butterflies with about 700 species divided into two major groups: the Asian endemic tribe Poritiini, and the African endemic tribe Liptenini. Among these, the Liptenini are notable for their lichenivorous diet and the strong but apparently non-mutualistic ant associations of many species. We present the first molecular phylogeny for this subfamily, based on data from 14 gene regions, and including 218 representatives from 177 taxa (approximately 25% of species) in 50 of the 58 (86%) recognized genera. From this analysis, we confirm the division of the subfamily into two tribes, and we rearrange the Liptenini tribe into six subtribes, Durbaniina, Pentilina, Liptenina, Iridanina and Epitolina, plus a new tribe, Cooksoniina subtrib. n., to fill a gap in the nomenclature revealed by the phylogenetic analysis. We also point to several genera in need of further taxonomic revision. Ancestral range reconstruction could not infer the range of the common ancestor of the Poritiinae; however, the common ancestor of the Poritiini was likely Asian, while that of the Liptenini was likely African, with subsequent narrowing of ranges in several lineages.
期刊介绍:
Systematic Entomology publishes original papers on insect systematics, phylogenetics and integrative taxonomy, with a preference for general interest papers of broad biological, evolutionary or zoogeographical relevance.