Hydrometallurgical recovery of critical metals from spent Li-ion batteries using simple leaching-precipitation techniques

IF 1.5 Q3 GEOSCIENCES, MULTIDISCIPLINARY
D. K. Rajak, C. Guria, Laldeep Gope, Jahir Ahamad Jibran
{"title":"Hydrometallurgical recovery of critical metals from spent Li-ion batteries using simple leaching-precipitation techniques","authors":"D. K. Rajak, C. Guria, Laldeep Gope, Jahir Ahamad Jibran","doi":"10.1080/12269328.2023.2208124","DOIUrl":null,"url":null,"abstract":"ABSTRACT The rising demands for critical metals and the environmental impact of solid waste disposal have increased interest in recycling of spent lithium-ion batteries (LiBs). This study was focused on hydrometallurgical recycling of LCMO type cathode batteries for the recovery of critical metals (lithium, cobalt, and manganese). The process involves sulfuric acid leaching in the presence of a reducing agent (H2O2) followed by the precipitation recovery of critical metals. The influential parameters like pulp density, H2SO4 concentration, H2O2 addition, agitation time, and temperature were optimized, yielding >98% leaching in 2.0 M H2SO4 with 4 vol.% of H2O2 at a moderate temperature of 50°C. Reaction kinetics revealed that the leaching was governed by the mixed-control process. Furthermore, the separation and recovery of metals from leach liquor was conducted by simple precipitation techniques, where KMnO4, C2H2O4, and Na2CO3 were used as precipitating reagents to recover MnO2, CoC2O4, and Li2CO3, respectively.","PeriodicalId":12714,"journal":{"name":"Geosystem Engineering","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2023-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geosystem Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/12269328.2023.2208124","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2

Abstract

ABSTRACT The rising demands for critical metals and the environmental impact of solid waste disposal have increased interest in recycling of spent lithium-ion batteries (LiBs). This study was focused on hydrometallurgical recycling of LCMO type cathode batteries for the recovery of critical metals (lithium, cobalt, and manganese). The process involves sulfuric acid leaching in the presence of a reducing agent (H2O2) followed by the precipitation recovery of critical metals. The influential parameters like pulp density, H2SO4 concentration, H2O2 addition, agitation time, and temperature were optimized, yielding >98% leaching in 2.0 M H2SO4 with 4 vol.% of H2O2 at a moderate temperature of 50°C. Reaction kinetics revealed that the leaching was governed by the mixed-control process. Furthermore, the separation and recovery of metals from leach liquor was conducted by simple precipitation techniques, where KMnO4, C2H2O4, and Na2CO3 were used as precipitating reagents to recover MnO2, CoC2O4, and Li2CO3, respectively.
用简单浸出-沉淀技术从废锂离子电池中湿法回收关键金属
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Geosystem Engineering
Geosystem Engineering GEOSCIENCES, MULTIDISCIPLINARY-
CiteScore
2.70
自引率
0.00%
发文量
11
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信