The Blum-Hanson Property

IF 0.3 Q4 MATHEMATICS
S. Grivaux
{"title":"The Blum-Hanson Property","authors":"S. Grivaux","doi":"10.1515/conop-2019-0009","DOIUrl":null,"url":null,"abstract":"Abstract Given a (real or complex, separable) Banach space, and a contraction T on X, we say that T has the Blum-Hanson property if whenever x, y ∈ X are such that Tnx tends weakly to y in X as n tends to infinity, the means 1N∑k=1NTnkx {1 \\over N}\\sum\\limits_{k = 1}^N {{T^{{n_k}}}x} tend to y in norm for every strictly increasing sequence (nk) k≥1 of integers. The space X itself has the Blum-Hanson property if every contraction on X has the Blum-Hanson property. We explain the ergodic-theoretic motivation for the Blum-Hanson property, prove that Hilbert spaces have the Blum-Hanson property, and then present a recent criterion of a geometric flavor, due to Lefèvre-Matheron-Primot, which allows to retrieve essentially all the known examples of spaces with the Blum-Hanson property. Lastly, following Lefèvre-Matheron, we characterize the compact metric spaces K such that the space C(K) has the Blum-Hanson property.","PeriodicalId":53800,"journal":{"name":"Concrete Operators","volume":"6 1","pages":"105 - 92"},"PeriodicalIF":0.3000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/conop-2019-0009","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Concrete Operators","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/conop-2019-0009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Given a (real or complex, separable) Banach space, and a contraction T on X, we say that T has the Blum-Hanson property if whenever x, y ∈ X are such that Tnx tends weakly to y in X as n tends to infinity, the means 1N∑k=1NTnkx {1 \over N}\sum\limits_{k = 1}^N {{T^{{n_k}}}x} tend to y in norm for every strictly increasing sequence (nk) k≥1 of integers. The space X itself has the Blum-Hanson property if every contraction on X has the Blum-Hanson property. We explain the ergodic-theoretic motivation for the Blum-Hanson property, prove that Hilbert spaces have the Blum-Hanson property, and then present a recent criterion of a geometric flavor, due to Lefèvre-Matheron-Primot, which allows to retrieve essentially all the known examples of spaces with the Blum-Hanson property. Lastly, following Lefèvre-Matheron, we characterize the compact metric spaces K such that the space C(K) has the Blum-Hanson property.
Blum-Hanson物业
摘要给定一个(实的或复的,可分离的)Banach空间和X上的收缩T,我们说T具有Blum-Hanson性质,如果当X,y∈X使得Tnx在X中弱趋向于y,因为n趋向于无穷大,则对于每个严格递增的整数序列(nk)k≥1,均值1N∑k=1NTnkx{1\overN}\sum\limits_{k=1}^n{{T^{n_k}}X}趋向于y。空间X本身具有Blum-Hanson性质,如果X上的每个收缩都具有Blum-汉森性质。我们解释了Blum-Hanson性质的遍历理论动机,证明了Hilbert空间具有Blum-Hansson性质,然后由于Lefèvre Matheron Primot,提出了一个最近的几何风格标准,它允许检索基本上所有已知的具有Blum-汉森性质的空间的例子。最后,继Lefèvre Matheron之后,我们刻画了紧致度量空间K,使得空间C(K)具有Blum-Hanson性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Concrete Operators
Concrete Operators MATHEMATICS-
CiteScore
1.00
自引率
16.70%
发文量
10
审稿时长
22 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信