Fu Yufan, Zhou Dong-fang, Z. Yi, Lu Dalong, Z. De-wei, Xuwei Fei
{"title":"Design of compact wideband Rotman lens for 5G multibeam application","authors":"Fu Yufan, Zhou Dong-fang, Z. Yi, Lu Dalong, Z. De-wei, Xuwei Fei","doi":"10.11884/HPLPB202133.200291","DOIUrl":null,"url":null,"abstract":"In this paper, a compact broadband Rotman lens beamforming network based on equal optical path difference is proposed. The beamforming network is intended for applications in a multi-beam antenna array of 5G millimeter-wave (mm-wave) communication. Firstly, the theoretical design of the Rotman lens is introduced in detail. A power divider is used to replace the standard single-port feeding mode to generate a high-directional beam, reducing the scattering of the lens’ internal energy and the energy loss at adjacent ports. The Chebyshev multi-stub matching converter is used to optimize the original tapered array output port. To ensure a wide frequency band, the original matching port size is reduced, and the overall size of the lens is reduced by 20%. Measurement results of the improved model, show that the working frequency band of the lens is 16.5−33.8 GHz, of which S11 is better than 15 dB at 17.2−32.0 GHz, and the scanning angle is ±30°. The lens has a simple and compact structure, can effectively provide a stable phase difference signal for adjacent array elements, and achieve the goal of 5G millimeter-wave array multi-beam.","PeriodicalId":39871,"journal":{"name":"强激光与粒子束","volume":"33 1","pages":"033006-1-033006-6"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"强激光与粒子束","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.11884/HPLPB202133.200291","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, a compact broadband Rotman lens beamforming network based on equal optical path difference is proposed. The beamforming network is intended for applications in a multi-beam antenna array of 5G millimeter-wave (mm-wave) communication. Firstly, the theoretical design of the Rotman lens is introduced in detail. A power divider is used to replace the standard single-port feeding mode to generate a high-directional beam, reducing the scattering of the lens’ internal energy and the energy loss at adjacent ports. The Chebyshev multi-stub matching converter is used to optimize the original tapered array output port. To ensure a wide frequency band, the original matching port size is reduced, and the overall size of the lens is reduced by 20%. Measurement results of the improved model, show that the working frequency band of the lens is 16.5−33.8 GHz, of which S11 is better than 15 dB at 17.2−32.0 GHz, and the scanning angle is ±30°. The lens has a simple and compact structure, can effectively provide a stable phase difference signal for adjacent array elements, and achieve the goal of 5G millimeter-wave array multi-beam.