Asymptotic expansions for Wiener–Hopf equations

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Kui Li, R. Wong
{"title":"Asymptotic expansions for Wiener–Hopf equations","authors":"Kui Li, R. Wong","doi":"10.1142/s0219530520500207","DOIUrl":null,"url":null,"abstract":"Wiener–Hopf Equations are of the form [Formula: see text] These equations arise in many physical problems such as radiative transport theory, reflection of an electromagnetive plane wave, sound wave transmission from a tube, and in material science. They are also known as the renewal equations on the half-line in Probability Theory. In this paper, we present a method of deriving asymptotic expansions for the solutions to these equations. Our method makes use of the Wiener–Hopf technique as well as the asymptotic expansions of Stieltjes and Hilbert transforms.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2020-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0219530520500207","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 1

Abstract

Wiener–Hopf Equations are of the form [Formula: see text] These equations arise in many physical problems such as radiative transport theory, reflection of an electromagnetive plane wave, sound wave transmission from a tube, and in material science. They are also known as the renewal equations on the half-line in Probability Theory. In this paper, we present a method of deriving asymptotic expansions for the solutions to these equations. Our method makes use of the Wiener–Hopf technique as well as the asymptotic expansions of Stieltjes and Hilbert transforms.
Wiener-Hopf方程的渐近展开式
维纳-霍普夫方程的形式为:这些方程出现在许多物理问题中,如辐射输运理论、电磁平面波的反射、声波从管道传播以及材料科学。它们在概率论中也被称为半线上的更新方程。本文给出了这些方程解的渐近展开式的一种推导方法。我们的方法利用了Wiener-Hopf技术以及Stieltjes和Hilbert变换的渐近展开。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信