Field-scale simulation of gas hydrate dissociation behavior in multilayered sediments under different depressurization conditions

2区 工程技术 Q1 Earth and Planetary Sciences
Seo-Yoon Moon , Hyo-Jin Shin , Jong-Se Lim
{"title":"Field-scale simulation of gas hydrate dissociation behavior in multilayered sediments under different depressurization conditions","authors":"Seo-Yoon Moon ,&nbsp;Hyo-Jin Shin ,&nbsp;Jong-Se Lim","doi":"10.1016/j.petrol.2022.111221","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>When a gas hydrate<span> reservoir is depressurized for gas production, the production tendency and dissociation behavior may differ depending on conditions such as the bottom hole pressure and </span></span>depressurization rate. Gas hydrate dissociation is a complex process that involves the transfer of materials and heat, and on-site analysis based on laboratory-scale results is critical. In the present study, a field-scale numerical analysis was performed to reflect the conditions of the Ulleung Basin in the East Sea of </span>Korea. The dissociation behavior, which varies depending on the conditions in the gas hydrate-bearing sediment, was analyzed under various conditions of bottom hole pressure and depressurization rate. This study also identified the effects of depressurization conditions on gas hydrate saturation. As the bottom hole pressure decreased and the depressurization rate increased, the production rate and cumulative production of gas and water increased, and the radius of the pressure propagation effect at the beginning of production increased. In sediments with a gas hydrate saturation of ≥70%, the pressure propagation was unstable and the dissociation rate was low. These results can serve as preliminary data for the field production of gas hydrates in the Ulleung Basin.</p></div>","PeriodicalId":16717,"journal":{"name":"Journal of Petroleum Science and Engineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Petroleum Science and Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0920410522010737","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
引用次数: 2

Abstract

When a gas hydrate reservoir is depressurized for gas production, the production tendency and dissociation behavior may differ depending on conditions such as the bottom hole pressure and depressurization rate. Gas hydrate dissociation is a complex process that involves the transfer of materials and heat, and on-site analysis based on laboratory-scale results is critical. In the present study, a field-scale numerical analysis was performed to reflect the conditions of the Ulleung Basin in the East Sea of Korea. The dissociation behavior, which varies depending on the conditions in the gas hydrate-bearing sediment, was analyzed under various conditions of bottom hole pressure and depressurization rate. This study also identified the effects of depressurization conditions on gas hydrate saturation. As the bottom hole pressure decreased and the depressurization rate increased, the production rate and cumulative production of gas and water increased, and the radius of the pressure propagation effect at the beginning of production increased. In sediments with a gas hydrate saturation of ≥70%, the pressure propagation was unstable and the dissociation rate was low. These results can serve as preliminary data for the field production of gas hydrates in the Ulleung Basin.

不同降压条件下多层沉积物中天然气水合物离解行为的场尺度模拟
当天然气水合物储层降压以生产天然气时,生产趋势和离解行为可能因井底压力和降压速率等条件而异。天然气水合物离解是一个涉及材料和热量传递的复杂过程,基于实验室规模结果的现场分析至关重要。在本研究中,对朝鲜东海乌梁盆地的情况进行了野外数值分析。分析了在不同井底压力和减压速率条件下,含天然气水合物沉积物中的离解行为,该行为随条件的不同而变化。该研究还确定了减压条件对天然气水合物饱和度的影响。随着井底压力的降低和降压速率的增加,气水的生产速率和累计产量增加,生产初期压力传播效应的半径增加。在天然气水合物饱和度≥70%的沉积物中,压力传播不稳定,离解率低。这些结果可作为乌梁盆地天然气水合物现场生产的初步数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Petroleum Science and Engineering
Journal of Petroleum Science and Engineering 工程技术-地球科学综合
CiteScore
11.30
自引率
0.00%
发文量
1511
审稿时长
13.5 months
期刊介绍: The objective of the Journal of Petroleum Science and Engineering is to bridge the gap between the engineering, the geology and the science of petroleum and natural gas by publishing explicitly written articles intelligible to scientists and engineers working in any field of petroleum engineering, natural gas engineering and petroleum (natural gas) geology. An attempt is made in all issues to balance the subject matter and to appeal to a broad readership. The Journal of Petroleum Science and Engineering covers the fields of petroleum (and natural gas) exploration, production and flow in its broadest possible sense. Topics include: origin and accumulation of petroleum and natural gas; petroleum geochemistry; reservoir engineering; reservoir simulation; rock mechanics; petrophysics; pore-level phenomena; well logging, testing and evaluation; mathematical modelling; enhanced oil and gas recovery; petroleum geology; compaction/diagenesis; petroleum economics; drilling and drilling fluids; thermodynamics and phase behavior; fluid mechanics; multi-phase flow in porous media; production engineering; formation evaluation; exploration methods; CO2 Sequestration in geological formations/sub-surface; management and development of unconventional resources such as heavy oil and bitumen, tight oil and liquid rich shales.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信