Semigroup dynamics for flight vectors

IF 0.2 Q4 MATHEMATICS, APPLIED
R. O'Brien
{"title":"Semigroup dynamics for flight vectors","authors":"R. O'Brien","doi":"10.1504/ijdsde.2020.10031335","DOIUrl":null,"url":null,"abstract":"A commutative semigroup of contractions S on a Hilbert space, ℌ, has a natural order and resultant net structure which defines stability, system dynamics, and α and ω limits for the flight vectors ℌ0. The space of 'pure' flight vectors - no nontrivial weakly stable components - are spanned by the ω limits of weakly-wandering vectors which are weakly Poisson recurrent. ℌ0 splits: ℌ0 = ℌm ⊕ ℌw, ℌw the weakly stable subspace and Hm the weakly Poisson recurrent space. ℌm = ⊕M(xτ, S) where M(xτ, S) is the closed subspace spanned by the weak limit points of xτ, {xτ} an orthonormal set of weakly-wandering vectors in ℌm. Examples illustrate the results.","PeriodicalId":43101,"journal":{"name":"International Journal of Dynamical Systems and Differential Equations","volume":" ","pages":""},"PeriodicalIF":0.2000,"publicationDate":"2020-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Dynamical Systems and Differential Equations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijdsde.2020.10031335","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 1

Abstract

A commutative semigroup of contractions S on a Hilbert space, ℌ, has a natural order and resultant net structure which defines stability, system dynamics, and α and ω limits for the flight vectors ℌ0. The space of 'pure' flight vectors - no nontrivial weakly stable components - are spanned by the ω limits of weakly-wandering vectors which are weakly Poisson recurrent. ℌ0 splits: ℌ0 = ℌm ⊕ ℌw, ℌw the weakly stable subspace and Hm the weakly Poisson recurrent space. ℌm = ⊕M(xτ, S) where M(xτ, S) is the closed subspace spanned by the weak limit points of xτ, {xτ} an orthonormal set of weakly-wandering vectors in ℌm. Examples illustrate the results.
飞行矢量的半群动力学
希尔伯特空间上的一个可交换半群S具有自然阶和由此产生的网结构,它定义了飞行向量的稳定性、系统动力学以及α和ω极限。“纯”飞行向量的空间——没有非平凡的弱稳定分量——是由弱泊松循环的弱漫游向量的ω极限张成的。ℌ0分裂:ℌ0 =ℌm⊕ℌw,ℌw弱稳定子空间和Hm弱泊松复发性空间。 =⊕m (xτ, S),其中m (xτ, S)是由 m中弱游走向量的标准正交集合xτ, {xτ}的弱极限点张成的闭子空间。示例说明了结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
16
期刊介绍: IJDSDE is a quarterly international journal that publishes original research papers of high quality in all areas related to dynamical systems and differential equations and their applications in biology, economics, engineering, physics, and other related areas of science. Manuscripts concerned with the development and application innovative mathematical tools and methods from dynamical systems and differential equations, are encouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信