On the structure of split regular -Hom-Jordan-Lie superalgebras

IF 0.4 Q4 MATHEMATICS
Valiollah Khalili
{"title":"On the structure of split regular -Hom-Jordan-Lie superalgebras","authors":"Valiollah Khalili","doi":"10.5269/bspm.47798","DOIUrl":null,"url":null,"abstract":"In this paper we study the structure of arbitrary split regular -Hom-Jordan-Lie super algebras. By developing techniques of connections of roots for this kind of algebras, we show that such a split regular -Hom-Jordan-Lie superalgebra L is of the form \nL = H \n[] \n  \nΣ \n[]2= V \n[]; with H  \n[] a graded linear subspace of the graded abelian subalgebra H and any V [ ]; a well-described ideal of L; satisfying [V [ ]; V []] = 0 if [] ̸= []: Under certain conditions, in the case of L being of maximal length, the simplicity of the algebra is characterized and it is shown that L is the direct sum of the family of its minimal ideals, each one being a simple split regular -Hom-Jordan-Lie superalgebra.","PeriodicalId":44941,"journal":{"name":"Boletim Sociedade Paranaense de Matematica","volume":" ","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2022-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Boletim Sociedade Paranaense de Matematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5269/bspm.47798","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we study the structure of arbitrary split regular -Hom-Jordan-Lie super algebras. By developing techniques of connections of roots for this kind of algebras, we show that such a split regular -Hom-Jordan-Lie superalgebra L is of the form L = H []   Σ []2= V []; with H  [] a graded linear subspace of the graded abelian subalgebra H and any V [ ]; a well-described ideal of L; satisfying [V [ ]; V []] = 0 if [] ̸= []: Under certain conditions, in the case of L being of maximal length, the simplicity of the algebra is characterized and it is shown that L is the direct sum of the family of its minimal ideals, each one being a simple split regular -Hom-Jordan-Lie superalgebra.
关于分裂正则Hom-Jordan李超代数的结构
本文研究了任意分裂正则- hom_jordan - lie超代数的结构。通过发展这类代数的根连接技术,我们证明了这样一个分裂正则- hom_jordan - lie超代数L的形式为L = H [] Σ []2= V [];有H[]的有阶阿贝尔子代数H和任意V[]的有阶线性子空间;L的理想;令人满意的[V];V []] = 0, if [] i =[]:在一定条件下,当L是最大长度时,证明了代数的简单性,并证明了L是其最小理想族的直接和,每个理想族都是一个简单的分裂正则- homo - jordan - lie超代数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.40
自引率
0.00%
发文量
140
审稿时长
25 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信