Maximal inequalities and some applications

IF 1.3 Q2 STATISTICS & PROBABILITY
Franziska Kuhn, R. Schilling
{"title":"Maximal inequalities and some applications","authors":"Franziska Kuhn, R. Schilling","doi":"10.1214/23-ps17","DOIUrl":null,"url":null,"abstract":"A maximal inequality is an inequality which involves the (absolute) supremum $\\sup_{s\\leq t}|X_{s}|$ or the running maximum $\\sup_{s\\leq t}X_{s}$ of a stochastic process $(X_t)_{t\\geq 0}$. We discuss maximal inequalities for several classes of stochastic processes with values in an Euclidean space: Martingales, L\\'evy processes, L\\'evy-type - including Feller processes, (compound) pseudo Poisson processes, stable-like processes and solutions to SDEs driven by a L\\'evy process -, strong Markov processes and Gaussian processes. Using the Burkholder-Davis-Gundy inequalities we als discuss some relations between maximal estimates in probability and the Hardy-Littlewood maximal functions from analysis. This paper has been accepted for publication in Probability Surveys","PeriodicalId":46216,"journal":{"name":"Probability Surveys","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2022-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Probability Surveys","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/23-ps17","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 2

Abstract

A maximal inequality is an inequality which involves the (absolute) supremum $\sup_{s\leq t}|X_{s}|$ or the running maximum $\sup_{s\leq t}X_{s}$ of a stochastic process $(X_t)_{t\geq 0}$. We discuss maximal inequalities for several classes of stochastic processes with values in an Euclidean space: Martingales, L\'evy processes, L\'evy-type - including Feller processes, (compound) pseudo Poisson processes, stable-like processes and solutions to SDEs driven by a L\'evy process -, strong Markov processes and Gaussian processes. Using the Burkholder-Davis-Gundy inequalities we als discuss some relations between maximal estimates in probability and the Hardy-Littlewood maximal functions from analysis. This paper has been accepted for publication in Probability Surveys
极大不等式及其应用
极大不等式是一个不等式,它涉及随机过程$(X_t)_{t\geq 0}$的(绝对)最大值$\sup_{s\leq t}|X_{s}|$或运行最大值$\sup_{s\leq t}X_{s}$。讨论了欧几里得空间中具有值的几类随机过程的极大不等式:鞅过程、l过程、l过程、l过程、(复合)伪泊松过程、类稳定过程和由l过程驱动的SDEs的解、强马尔可夫过程和高斯过程。利用Burkholder-Davis-Gundy不等式,讨论了概率的极大估计与分析得到的Hardy-Littlewood极大函数之间的关系。这篇论文已被《概率论》接受发表
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Probability Surveys
Probability Surveys STATISTICS & PROBABILITY-
CiteScore
4.70
自引率
0.00%
发文量
9
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信