J. Dennis, A. Baker, B. Dobbins, M. Bell, Jian Sun, Youngsung Kim, Ting-Yu Cha
{"title":"Enabling efficient execution of a variational data assimilation application","authors":"J. Dennis, A. Baker, B. Dobbins, M. Bell, Jian Sun, Youngsung Kim, Ting-Yu Cha","doi":"10.1177/10943420221119801","DOIUrl":null,"url":null,"abstract":"Remote sensing observational instruments are critical for better understanding and predicting severe weather. Observational data from such instruments, such as Doppler radar data, for example, are often processed for assimilation into numerical weather prediction models. As such instruments become more sophisticated, the amount of data to be processed grows and requires efficient variational analysis tools. Here we examine the code that implements the popular SAMURAI (Spline Analysis at Mesoscale Utilizing Radar and Aircraft Instrumentation) technique for estimating the atmospheric state for a given set of observations. We employ a number of techniques to significantly improve the code’s performance, including porting it to run on standard HPC clusters, analyzing and optimizing its single-node performance, implementing a more efficient nonlinear optimization method, and enabling the use of GPUs via OpenACC. Our efforts thus far have yielded more than 100x improvement over the original code on large test problems of interest to the community.","PeriodicalId":54957,"journal":{"name":"International Journal of High Performance Computing Applications","volume":"37 1","pages":"101 - 114"},"PeriodicalIF":2.5000,"publicationDate":"2022-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of High Performance Computing Applications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1177/10943420221119801","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
Remote sensing observational instruments are critical for better understanding and predicting severe weather. Observational data from such instruments, such as Doppler radar data, for example, are often processed for assimilation into numerical weather prediction models. As such instruments become more sophisticated, the amount of data to be processed grows and requires efficient variational analysis tools. Here we examine the code that implements the popular SAMURAI (Spline Analysis at Mesoscale Utilizing Radar and Aircraft Instrumentation) technique for estimating the atmospheric state for a given set of observations. We employ a number of techniques to significantly improve the code’s performance, including porting it to run on standard HPC clusters, analyzing and optimizing its single-node performance, implementing a more efficient nonlinear optimization method, and enabling the use of GPUs via OpenACC. Our efforts thus far have yielded more than 100x improvement over the original code on large test problems of interest to the community.
期刊介绍:
With ever increasing pressure for health services in all countries to meet rising demands, improve their quality and efficiency, and to be more accountable; the need for rigorous research and policy analysis has never been greater. The Journal of Health Services Research & Policy presents the latest scientific research, insightful overviews and reflections on underlying issues, and innovative, thought provoking contributions from leading academics and policy-makers. It provides ideas and hope for solving dilemmas that confront all countries.