{"title":"Equivalence of generics","authors":"Iian B. Smythe","doi":"10.1007/s00153-021-00813-3","DOIUrl":null,"url":null,"abstract":"<div><p>Given a countable transitive model of set theory and a partial order contained in it, there is a natural countable Borel equivalence relation on generic filters over the model; two are equivalent if they yield the same generic extension. We examine the complexity of this equivalence relation for various partial orders, focusing on Cohen and random forcing. We prove, among other results, that the former is an increasing union of countably many hyperfinite Borel equivalence relations, and hence is amenable, while the latter is neither amenable nor treeable.</p></div>","PeriodicalId":48853,"journal":{"name":"Archive for Mathematical Logic","volume":null,"pages":null},"PeriodicalIF":0.3000,"publicationDate":"2022-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archive for Mathematical Logic","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00153-021-00813-3","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Arts and Humanities","Score":null,"Total":0}
引用次数: 0
Abstract
Given a countable transitive model of set theory and a partial order contained in it, there is a natural countable Borel equivalence relation on generic filters over the model; two are equivalent if they yield the same generic extension. We examine the complexity of this equivalence relation for various partial orders, focusing on Cohen and random forcing. We prove, among other results, that the former is an increasing union of countably many hyperfinite Borel equivalence relations, and hence is amenable, while the latter is neither amenable nor treeable.
期刊介绍:
The journal publishes research papers and occasionally surveys or expositions on mathematical logic. Contributions are also welcomed from other related areas, such as theoretical computer science or philosophy, as long as the methods of mathematical logic play a significant role. The journal therefore addresses logicians and mathematicians, computer scientists, and philosophers who are interested in the applications of mathematical logic in their own field, as well as its interactions with other areas of research.