{"title":"Structural and paragenetic evolution of garnet–bearing barroisite schist from the Suo metamorphic complex, SW Japan","authors":"M. Eto, S. Endo","doi":"10.2465/jmps.200127","DOIUrl":null,"url":null,"abstract":"The Suo metamorphic complex in the Chugoku Mountains of southwest (SW) Japan represents Jurassic high pressure (P )/temperature (T ) type metamorphic rocks. Its high–grade part is exposed in the Nichinan area, where barroisite–bearing mafic schist occurs as ~ 50–m thick layers in pelitic schist. These mafic layers contain the common matrix assemblage barroisite + epidote + albite + quartz + titanite + phengite. Relic minerals (garnet, glaucophane, aegirine–augite, Si–rich phengite and rutile) of early–stage parageneses are preserved within albite porphyroblasts. The textural relations combined with pseudosection modeling suggest a clockwise P–T trajectory from epidote–blueschist facies through the garnet + clinopyroxene stable conditions to epidote– amphibolite facies. Two distinct phases of high–strain ductile deformation (D1 and D2) can be recognized in the area, and they are related to early and late stages of exhumation. Albite porphyroblasts initially grew statically between D1 and D2 at ~ 520–530 °C and ~ 0.8 GPa, and further retrogressive growth of albite rims and chlorite at the expense of barroisite is synchronous with D2. The lithological association, deformation structures and metamorphic conditions of the Jurassic Suo metamorphic complex are very similar to those of the Cretaceous Sanbagawa metamorphic complex, suggesting they have comparable exhumation processes as coherent–type high–P/T metamorphic complexes.","PeriodicalId":51093,"journal":{"name":"Journal of Mineralogical and Petrological Sciences","volume":"115 1","pages":"416-427"},"PeriodicalIF":0.9000,"publicationDate":"2020-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mineralogical and Petrological Sciences","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.2465/jmps.200127","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MINERALOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The Suo metamorphic complex in the Chugoku Mountains of southwest (SW) Japan represents Jurassic high pressure (P )/temperature (T ) type metamorphic rocks. Its high–grade part is exposed in the Nichinan area, where barroisite–bearing mafic schist occurs as ~ 50–m thick layers in pelitic schist. These mafic layers contain the common matrix assemblage barroisite + epidote + albite + quartz + titanite + phengite. Relic minerals (garnet, glaucophane, aegirine–augite, Si–rich phengite and rutile) of early–stage parageneses are preserved within albite porphyroblasts. The textural relations combined with pseudosection modeling suggest a clockwise P–T trajectory from epidote–blueschist facies through the garnet + clinopyroxene stable conditions to epidote– amphibolite facies. Two distinct phases of high–strain ductile deformation (D1 and D2) can be recognized in the area, and they are related to early and late stages of exhumation. Albite porphyroblasts initially grew statically between D1 and D2 at ~ 520–530 °C and ~ 0.8 GPa, and further retrogressive growth of albite rims and chlorite at the expense of barroisite is synchronous with D2. The lithological association, deformation structures and metamorphic conditions of the Jurassic Suo metamorphic complex are very similar to those of the Cretaceous Sanbagawa metamorphic complex, suggesting they have comparable exhumation processes as coherent–type high–P/T metamorphic complexes.
期刊介绍:
The Journal of Mineralogical and Petrological Sciences (JMPS) publishes original articles, reviews and letters in the fields of mineralogy, petrology, economic geology, geochemistry, planetary materials science, and related scientific fields. As an international journal, we aim to provide worldwide diffusion for the results of research in Japan, as well as to serve as a medium with high impact factor for the global scientific communication
Given the remarkable rate at which publications have been expanding to include several fields, including planetary and earth sciences, materials science, and instrumental analysis technology, the journal aims to encourage and develop a variety of such new interdisciplinary scientific fields, to encourage the wide scope of such new fields to bloom in the future, and to contribute to the rapidly growing international scientific community.
To cope with this emerging scientific environment, in April 2000 the journal''s two parent societies, MSJ* (The Mineralogical Society of Japan) and JAMPEG* (The Japanese Association of Mineralogists, Petrologists and Economic Geologists), combined their respective journals (the Mineralogical Journal and the Journal of Mineralogy, Petrology and Economic Geology). The result of this merger was the Journal of Mineralogical and Petrological Sciences, which has a greatly expanded and enriched scope compared to its predecessors.