{"title":"Lateral-Torsional Buckling of Non-Prismatic I-Beams Using FEM Approach","authors":"Senthilpandian Mariappan, Karthiyaini Somasundaram, Shanmugasundaram Muthusamy, Deepa Nivethika Sivasubramani, Adapala Sunny Suprakash, Karthikeyan Kothandapani","doi":"10.5755/j02.ms.33151","DOIUrl":null,"url":null,"abstract":"Essential steel components with variable cross-section are fabricated from welded plates, which are primarily employed for the growth of the construction industry in beams according to the stress and stiffness requirements of the structure. Lateral-torsional buckling, in which the beam experiences non-uniform twisting and buckling about its weaker axis, is one of the most common failure modes. This dissertation focuses primarily on the lateral-torsional buckle of non-prismatic I-beams. The development of differential equations for deformation analysis of the non-prismatic beam. ANSYS results and deformation equation results are compared to validate the methodology. Using ANSYS, the lateral torsional buckling of a non-prismatic I-beam section with uniformly distributed load is analyzed. In finite element analyses, the solid element approach is used to determine the lateral buckling load for various cross-sections (β = 0.1 to 1.0) by analyzing their behavior. In addition, a stiffener is used to prevent lateral buckling, and the results are compared to a model without stiffeners.","PeriodicalId":49875,"journal":{"name":"Materials Science-Poland","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science-Poland","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.5755/j02.ms.33151","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
Essential steel components with variable cross-section are fabricated from welded plates, which are primarily employed for the growth of the construction industry in beams according to the stress and stiffness requirements of the structure. Lateral-torsional buckling, in which the beam experiences non-uniform twisting and buckling about its weaker axis, is one of the most common failure modes. This dissertation focuses primarily on the lateral-torsional buckle of non-prismatic I-beams. The development of differential equations for deformation analysis of the non-prismatic beam. ANSYS results and deformation equation results are compared to validate the methodology. Using ANSYS, the lateral torsional buckling of a non-prismatic I-beam section with uniformly distributed load is analyzed. In finite element analyses, the solid element approach is used to determine the lateral buckling load for various cross-sections (β = 0.1 to 1.0) by analyzing their behavior. In addition, a stiffener is used to prevent lateral buckling, and the results are compared to a model without stiffeners.
期刊介绍:
Material Sciences-Poland is an interdisciplinary journal devoted to experimental research into results on the relationships between structure, processing, properties, technology, and uses of materials. Original research articles and review can be only submitted.