The application of GHz band charge pump rectifier and rectenna array for satellite internal wireless system

IF 1.6 Q4 ENERGY & FUELS
Ce Wang, Bo Yang, S. Kojima, N. Shinohara
{"title":"The application of GHz band charge pump rectifier and rectenna array for satellite internal wireless system","authors":"Ce Wang, Bo Yang, S. Kojima, N. Shinohara","doi":"10.1017/wpt.2019.13","DOIUrl":null,"url":null,"abstract":"An internal wireless system (IWS) for satellites was proposed in a previous study to reduce the weight of satellites. It is a system that uses wireless communication modules to communicate between the satellite's subsystems. We proposed a complete IWS that employs microwave wireless power transmission technology, and we proposed a design of GHz band high efficiency rectifier based charge pump rectifiers with a class-f filter called class-f charge pump rectifiers. We theoretically compare the diode losses in a charge pump and single shunt rectifier, and experimentally verify the results. Apart from this, we consider that the class-f charge pump rectifiers will be used for a rectenna array. In order to know the direct current (DC) load change of class-f charge pump circuits is connected as a rectenna array, we measured the conversion efficiencies of a 2 by 2 rectenna array, connected in series and in parallel. The results of the experiment indicate that the optimum load of the rectifier changes to four times DC load when connected in series, and to 1/4 the DC load when connected in parallel.","PeriodicalId":43105,"journal":{"name":"Wireless Power Transfer","volume":" ","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1017/wpt.2019.13","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wireless Power Transfer","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/wpt.2019.13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 3

Abstract

An internal wireless system (IWS) for satellites was proposed in a previous study to reduce the weight of satellites. It is a system that uses wireless communication modules to communicate between the satellite's subsystems. We proposed a complete IWS that employs microwave wireless power transmission technology, and we proposed a design of GHz band high efficiency rectifier based charge pump rectifiers with a class-f filter called class-f charge pump rectifiers. We theoretically compare the diode losses in a charge pump and single shunt rectifier, and experimentally verify the results. Apart from this, we consider that the class-f charge pump rectifiers will be used for a rectenna array. In order to know the direct current (DC) load change of class-f charge pump circuits is connected as a rectenna array, we measured the conversion efficiencies of a 2 by 2 rectenna array, connected in series and in parallel. The results of the experiment indicate that the optimum load of the rectifier changes to four times DC load when connected in series, and to 1/4 the DC load when connected in parallel.
GHz频段电荷泵整流器和矩形天线阵列在卫星内部无线系统中的应用
以前的一项研究提出了一种用于卫星的内部无线系统(IWS),以减轻卫星的重量。这是一个使用无线通信模块在卫星子系统之间进行通信的系统。我们提出了一个完整的IWS,该IWS采用微波无线功率传输技术,并提出了一种基于GHz频带高效整流器的电荷泵整流器的设计,该整流器具有一个称为f类电荷泵整流器(class-f charge pump rectifiers)的f类滤波器。我们从理论上比较了电荷泵和单并联整流器中的二极管损耗,并通过实验验证了结果。除此之外,我们认为f类电荷泵整流器将用于矩形天线阵列。为了了解f类电荷泵电路作为矩形天线阵列连接时的直流(DC)负载变化,我们测量了串联和并联的2×2矩形天线阵列的转换效率。实验结果表明,整流器的最佳负载在串联时变为四倍直流负载,在并联时变为1/4直流负载。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Wireless Power Transfer
Wireless Power Transfer ENERGY & FUELS-
CiteScore
2.50
自引率
0.00%
发文量
3
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信