{"title":"Frequency-domain acoustic full waveform inversion with an embedded boundary method for irregular topography","authors":"Yunhui Park, Jong-Kil Hwang","doi":"10.1080/08123985.2022.2117603","DOIUrl":null,"url":null,"abstract":"In the implementation of full waveform inversion (FWI) to identify subsurface velocity distributions with land seismic data, which are often acquired in regions with irregular topography, wave equation-based modelling requires caution. In particular, when using the finite difference method (FDM), unwanted scattered waves are generated because irregular surfaces crossing a rectangular grid are discretized via a staircase approximation; hence, if the problems caused by this staircase approximation are disregarded, FDM-based FWI may fail due to the presence of undesirable wavefields. To resolve this problem, this study develops a 2D frequency-domain acoustic FWI technique using a 9-point FDM-based modelling scheme that includes an embedded boundary method (EBM). This study suggests a workflow for the whole EBM-based FWI process from the calculation of coefficients for the EBM-based 9-point FDM modelling to applying it to FWI for proper velocity updates. In numerical examples, using velocity models with a tilted surface and an arbitrarily fluctuating surface, we synthesize seismic data and verify the accuracy of EBM-based 9-point FDM modelling and its superiority over the conventional FDM by comparing it with wavefields derived from the spectral element method. Then, we show that our EBM-based FWI is able to estimate subsurface velocity distributions even though the model has irregular topography, which spoils the result of the conventional FWI.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1080/08123985.2022.2117603","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In the implementation of full waveform inversion (FWI) to identify subsurface velocity distributions with land seismic data, which are often acquired in regions with irregular topography, wave equation-based modelling requires caution. In particular, when using the finite difference method (FDM), unwanted scattered waves are generated because irregular surfaces crossing a rectangular grid are discretized via a staircase approximation; hence, if the problems caused by this staircase approximation are disregarded, FDM-based FWI may fail due to the presence of undesirable wavefields. To resolve this problem, this study develops a 2D frequency-domain acoustic FWI technique using a 9-point FDM-based modelling scheme that includes an embedded boundary method (EBM). This study suggests a workflow for the whole EBM-based FWI process from the calculation of coefficients for the EBM-based 9-point FDM modelling to applying it to FWI for proper velocity updates. In numerical examples, using velocity models with a tilted surface and an arbitrarily fluctuating surface, we synthesize seismic data and verify the accuracy of EBM-based 9-point FDM modelling and its superiority over the conventional FDM by comparing it with wavefields derived from the spectral element method. Then, we show that our EBM-based FWI is able to estimate subsurface velocity distributions even though the model has irregular topography, which spoils the result of the conventional FWI.