The A∞-structure of the index map

IF 0.5 Q3 MATHEMATICS
O. Braunling, M. Groechenig, J. Wolfson
{"title":"The A∞-structure of the index map","authors":"O. Braunling, M. Groechenig, J. Wolfson","doi":"10.2140/AKT.2018.3.581","DOIUrl":null,"url":null,"abstract":"Let $F$ be a local field with residue field $k$. The classifying space of $GL_n(F)$ comes canonically equipped with a map to the delooping of the $K$-theory space of $k$. Passing to loop spaces, such a map abstractly encodes a homotopy coherently associative map of A-infinity-spaces $GL_n(F)\\to K_k$. Using a generalized Waldhausen construction, we construct an explicit model built for the $A_\\infty$-structure of this map, built from nested systems of lattices in $F^n$. More generally, we construct this model in the framework of Tate objects in exact categories, with finite dimensional vector spaces over local fields as a motivating example.","PeriodicalId":42182,"journal":{"name":"Annals of K-Theory","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2018-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2140/AKT.2018.3.581","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of K-Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/AKT.2018.3.581","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

Abstract

Let $F$ be a local field with residue field $k$. The classifying space of $GL_n(F)$ comes canonically equipped with a map to the delooping of the $K$-theory space of $k$. Passing to loop spaces, such a map abstractly encodes a homotopy coherently associative map of A-infinity-spaces $GL_n(F)\to K_k$. Using a generalized Waldhausen construction, we construct an explicit model built for the $A_\infty$-structure of this map, built from nested systems of lattices in $F^n$. More generally, we construct this model in the framework of Tate objects in exact categories, with finite dimensional vector spaces over local fields as a motivating example.
指数映射的A∞结构
设$F$为局部域,剩余域为$k$。$GL_n(F)$的分类空间通常配备了一个映射到$k$的$K$ -理论空间的发展。传递给循环空间,这样的映射抽象地编码了a -无穷空间的同伦相干关联映射$GL_n(F)\to K_k$。利用广义的Waldhausen构造,我们构造了一个明确的模型,该模型由$F^n$中嵌套的格系统构建而成,用于该地图的$A_\infty$ -结构。更一般地说,我们在精确类别的Tate对象框架中构建该模型,并以局部场上的有限维向量空间作为激励示例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annals of K-Theory
Annals of K-Theory MATHEMATICS-
CiteScore
1.10
自引率
0.00%
发文量
12
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信