Parameter-Uniform Numerical Scheme for Singularly Perturbed Delay Parabolic Reaction Diffusion Equations with Integral Boundary Condition

IF 1.4 Q2 MATHEMATICS, APPLIED
Wakjira Tolassa Gobena, G. Duressa
{"title":"Parameter-Uniform Numerical Scheme for Singularly Perturbed Delay Parabolic Reaction Diffusion Equations with Integral Boundary Condition","authors":"Wakjira Tolassa Gobena, G. Duressa","doi":"10.1155/2021/9993644","DOIUrl":null,"url":null,"abstract":"Numerical computation for the class of singularly perturbed delay parabolic reaction diffusion equations with integral boundary condition has been considered. A parameter-uniform numerical method is constructed via the nonstandard finite difference method for the spatial direction, and the backward Euler method for the resulting system of initial value problems in temporal direction is used. The integral boundary condition is treated using numerical integration techniques. Maximum absolute errors and the rate of convergence for different values of perturbation parameter \n \n ε\n \n and mesh sizes are tabulated for two model examples. The proposed method is shown to be parameter-uniformly convergent.","PeriodicalId":55967,"journal":{"name":"International Journal of Differential Equations","volume":" ","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2021-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Differential Equations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2021/9993644","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 12

Abstract

Numerical computation for the class of singularly perturbed delay parabolic reaction diffusion equations with integral boundary condition has been considered. A parameter-uniform numerical method is constructed via the nonstandard finite difference method for the spatial direction, and the backward Euler method for the resulting system of initial value problems in temporal direction is used. The integral boundary condition is treated using numerical integration techniques. Maximum absolute errors and the rate of convergence for different values of perturbation parameter ε and mesh sizes are tabulated for two model examples. The proposed method is shown to be parameter-uniformly convergent.
具有积分边界条件的奇摄动时滞抛物型反应扩散方程的参数一致数值格式
研究了一类具有积分边界条件的奇摄动时滞抛物型反应扩散方程的数值计算。在空间方向上采用非标准有限差分法构造参数一致数值方法,在时间方向上采用倒推欧拉法求解初值问题。用数值积分技术处理积分边界条件。给出了两个模型实例在不同扰动参数ε值和网格尺寸下的最大绝对误差和收敛速度。该方法具有参数一致收敛性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.10
自引率
0.00%
发文量
20
审稿时长
20 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信