Asymptotic total geodesy of local holomorphic curves exiting a bounded symmetric domain and applications to a uniformization problem for algebraic subsets

IF 1.3 1区 数学 Q1 MATHEMATICS
S. Chan, N. Mok
{"title":"Asymptotic total geodesy of local holomorphic curves exiting a bounded symmetric domain and applications to a uniformization problem for algebraic subsets","authors":"S. Chan, N. Mok","doi":"10.4310/jdg/1641413830","DOIUrl":null,"url":null,"abstract":"The current article stems from our study on the asymptotic behavior of holomorphic isometric embeddings of the Poincare disk into bounded symmetric domains. As a first result we prove that any holomorphic curve exiting the boundary of a bounded symmetric domain $\\Omega$ must necessarily be asymptotically totally geodesic. Assuming otherwise we derive by the method of rescaling a hypothetical holomorphic isometric embedding of the Poincare disk with ${\\rm Aut}(\\Omega')$-equivalent tangent spaces into a tube domain $\\Omega' \\subset \\Omega$ and derive a contradiction by means of the Poincare-Lelong equation. We deduce that equivariant holomorphic embeddings between bounded symmetric domains must be totally geodesic. Furthermore, we solve a uniformization problem on algebraic subsets $Z \\subset \\Omega$. More precisely, if $\\check \\Gamma\\subset {\\rm Aut}(\\Omega)$ is a torsion-free discrete subgroup leaving $Z$ invariant such that $Z/\\check \\Gamma$ is compact, we prove that $Z \\subset \\Omega$ is totally geodesic. In particular, letting $\\Gamma \\subset{\\rm Aut}(\\Omega)$ be a torsion-free lattice, and $\\pi: \\Omega \\to \\Omega/\\Gamma =: X_\\Gamma$ be the uniformization map, a subvariety $Y \\subset X_\\Gamma$ must be totally geodesic whenever some (and hence any) irreducible component $Z$ of $\\pi^{-1}(Y)$ is an algebraic subset of $\\Omega$. For cocompact lattices this yields a characterization of totally geodesic subsets of $X_\\Gamma$ by means of bi-algebraicity without recourse to the celebrated monodromy result of Andre-Deligne on subvarieties of Shimura varieties, and as such our proof applies to not necessarily arithmetic cocompact lattices.","PeriodicalId":15642,"journal":{"name":"Journal of Differential Geometry","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2018-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/jdg/1641413830","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

The current article stems from our study on the asymptotic behavior of holomorphic isometric embeddings of the Poincare disk into bounded symmetric domains. As a first result we prove that any holomorphic curve exiting the boundary of a bounded symmetric domain $\Omega$ must necessarily be asymptotically totally geodesic. Assuming otherwise we derive by the method of rescaling a hypothetical holomorphic isometric embedding of the Poincare disk with ${\rm Aut}(\Omega')$-equivalent tangent spaces into a tube domain $\Omega' \subset \Omega$ and derive a contradiction by means of the Poincare-Lelong equation. We deduce that equivariant holomorphic embeddings between bounded symmetric domains must be totally geodesic. Furthermore, we solve a uniformization problem on algebraic subsets $Z \subset \Omega$. More precisely, if $\check \Gamma\subset {\rm Aut}(\Omega)$ is a torsion-free discrete subgroup leaving $Z$ invariant such that $Z/\check \Gamma$ is compact, we prove that $Z \subset \Omega$ is totally geodesic. In particular, letting $\Gamma \subset{\rm Aut}(\Omega)$ be a torsion-free lattice, and $\pi: \Omega \to \Omega/\Gamma =: X_\Gamma$ be the uniformization map, a subvariety $Y \subset X_\Gamma$ must be totally geodesic whenever some (and hence any) irreducible component $Z$ of $\pi^{-1}(Y)$ is an algebraic subset of $\Omega$. For cocompact lattices this yields a characterization of totally geodesic subsets of $X_\Gamma$ by means of bi-algebraicity without recourse to the celebrated monodromy result of Andre-Deligne on subvarieties of Shimura varieties, and as such our proof applies to not necessarily arithmetic cocompact lattices.
存在有界对称区域的局部全纯曲线的渐近全测地线及其在代数子集均匀化问题中的应用
本文源于我们对Poincare圆盘的全纯等距嵌入到有界对称域中的渐近行为的研究。作为第一个结果,我们证明了任何离开有界对称域$\Omega$边界的全纯曲线都必须是渐近全测地的。如果不是这样,我们通过将具有${\rmAut}(\Omega')$-等价切空间的庞加莱圆盘的假设全纯等距嵌入重新缩放到管域$\Omega'\subet\Omega$中的方法导出,并通过庞加莱-勒隆方程导出矛盾。我们推导出有界对称域之间的等变全纯嵌入必须是全测地的。此外,我们还解决了代数子集$Z\subet\Omega$上的一个一致化问题。更确切地说,如果$\check\Gamma\subet{\rmAut}(\Omega)$是一个无扭离散子群,留下$Z$不变,使得$Z/\check\Gamma$是紧致的,我们证明了$Z\subet \Omega$是完全测地的。特别地,如果$\Gamma\subet{\rmAut}(\Omega)$是无扭格,并且$\pi:\Omega\to\Omega/\Gamma=:X_\Gamma$是一致化映射,则只要$\pi^{-1}(Y)$的某些(因此是任何)不可约分量$Z$是$\Omega$的代数子集,则子变体$Y\subet X_\Gamma$必须是全测地的。对于共压缩格,这通过双代数产生了$X_\Gamma$的全测地子集的特征,而不依赖于Andre Deligne关于Shimura变种的子变种的著名单调结果,因此我们的证明不一定适用于算术共压缩格。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.40
自引率
0.00%
发文量
24
审稿时长
>12 weeks
期刊介绍: Publishes the latest research in differential geometry and related areas of differential equations, mathematical physics, algebraic geometry, and geometric topology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信