{"title":"Exponential approximation in variable exponent Lebesgue spaces on the real line","authors":"R. Akgün","doi":"10.33205/cma.1167459","DOIUrl":null,"url":null,"abstract":"Present work contains a method to obtain Jackson and Stechkin type inequalities of approximation by integral functions of finite degree (IFFD) in some variable exponent Lebesgue space of real functions defined on $\\boldsymbol{R}:=\\left( -\\infty ,+\\infty \\right) $. To do this, we employ a transference theorem which produce norm inequalities starting from norm inequalities in $\\mathcal{C}(\\boldsymbol{R})$, the class of bounded uniformly continuous functions defined on $\\boldsymbol{R}$. Let $B\\subseteq \\boldsymbol{R}$ be a measurable set, $p\\left( x\\right) :B\\rightarrow \\lbrack 1,\\infty )$ be a measurable function. For the class of functions $f$ belonging to variable exponent Lebesgue spaces $L_{p\\left( x\\right) }\\left( B\\right) $, we consider difference operator $\\left( I-T_{\\delta }\\right)^{r}f\\left( \\cdot \\right) $ under the condition that $p(x)$ satisfies the log-Hölder continuity condition and $1\\leq \\mathop{\\rm ess \\; inf} \\limits\\nolimits_{x\\in B}p(x)$, $\\mathop{\\rm ess \\; sup}\\limits\\nolimits_{x\\in B}p(x)<\\infty $, where $I$ is the identity operator, $r\\in \\mathrm{N}:=\\left\\{ 1,2,3,\\cdots \\right\\} $, $\\delta \\geq 0$ and\n $$\n T_{\\delta }f\\left( x\\right) =\\frac{1}{\\delta }\\int\\nolimits_{0}^{\\delta\n }f\\left( x+t\\right) dt, x\\in \\boldsymbol{R},\n T_{0}\\equiv I,\n $$\n is the forward Steklov operator. It is proved that\n $$\n \\left\\Vert \\left( I-T_{\\delta }\\right) ^{r}f\\right\\Vert _{p\\left( \\cdot\n \\right) }\n $$\n is a suitable measure of smoothness for functions in $L_{p\\left( x\\right)\n }\\left( B\\right) $, where $\\left\\Vert \\cdot \\right\\Vert _{p\\left( \\cdot\n \\right) }$ is Luxemburg norm in $L_{p\\left( x\\right) }\\left( B\\right) .$ We\n obtain main properties of difference operator $\\left\\Vert \\left( I-T_{\\delta\n }\\right) ^{r}f\\right\\Vert _{p\\left( \\cdot \\right) }$ in $L_{p\\left( x\\right)\n }\\left( B\\right) .$ We give proof of direct and inverse theorems of\n approximation by IFFD in $L_{p\\left( x\\right) }\\left( \\boldsymbol{R}\\right)\n . $","PeriodicalId":36038,"journal":{"name":"Constructive Mathematical Analysis","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Constructive Mathematical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33205/cma.1167459","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Present work contains a method to obtain Jackson and Stechkin type inequalities of approximation by integral functions of finite degree (IFFD) in some variable exponent Lebesgue space of real functions defined on $\boldsymbol{R}:=\left( -\infty ,+\infty \right) $. To do this, we employ a transference theorem which produce norm inequalities starting from norm inequalities in $\mathcal{C}(\boldsymbol{R})$, the class of bounded uniformly continuous functions defined on $\boldsymbol{R}$. Let $B\subseteq \boldsymbol{R}$ be a measurable set, $p\left( x\right) :B\rightarrow \lbrack 1,\infty )$ be a measurable function. For the class of functions $f$ belonging to variable exponent Lebesgue spaces $L_{p\left( x\right) }\left( B\right) $, we consider difference operator $\left( I-T_{\delta }\right)^{r}f\left( \cdot \right) $ under the condition that $p(x)$ satisfies the log-Hölder continuity condition and $1\leq \mathop{\rm ess \; inf} \limits\nolimits_{x\in B}p(x)$, $\mathop{\rm ess \; sup}\limits\nolimits_{x\in B}p(x)<\infty $, where $I$ is the identity operator, $r\in \mathrm{N}:=\left\{ 1,2,3,\cdots \right\} $, $\delta \geq 0$ and
$$
T_{\delta }f\left( x\right) =\frac{1}{\delta }\int\nolimits_{0}^{\delta
}f\left( x+t\right) dt, x\in \boldsymbol{R},
T_{0}\equiv I,
$$
is the forward Steklov operator. It is proved that
$$
\left\Vert \left( I-T_{\delta }\right) ^{r}f\right\Vert _{p\left( \cdot
\right) }
$$
is a suitable measure of smoothness for functions in $L_{p\left( x\right)
}\left( B\right) $, where $\left\Vert \cdot \right\Vert _{p\left( \cdot
\right) }$ is Luxemburg norm in $L_{p\left( x\right) }\left( B\right) .$ We
obtain main properties of difference operator $\left\Vert \left( I-T_{\delta
}\right) ^{r}f\right\Vert _{p\left( \cdot \right) }$ in $L_{p\left( x\right)
}\left( B\right) .$ We give proof of direct and inverse theorems of
approximation by IFFD in $L_{p\left( x\right) }\left( \boldsymbol{R}\right)
. $