On the singularly perturbation fractional Kirchhoff equations: Critical case

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Guangze Gu, Zhipeng Yang
{"title":"On the singularly perturbation fractional Kirchhoff equations: Critical case","authors":"Guangze Gu, Zhipeng Yang","doi":"10.1515/anona-2022-0234","DOIUrl":null,"url":null,"abstract":"Abstract This article deals with the following fractional Kirchhoff problem with critical exponent a + b ∫ R N ∣ ( − Δ ) s 2 u ∣ 2 d x ( − Δ ) s u = ( 1 + ε K ( x ) ) u 2 s ∗ − 1 , in R N , \\left(a+b\\mathop{\\int }\\limits_{{{\\mathbb{R}}}^{N}}| {\\left(-\\Delta )}^{\\tfrac{s}{2}}u\\hspace{-0.25em}{| }^{2}{\\rm{d}}x\\right){\\left(-\\Delta )}^{s}u=\\left(1+\\varepsilon K\\left(x)){u}^{{2}_{s}^{\\ast }-1},\\hspace{1.0em}\\hspace{0.1em}\\text{in}\\hspace{0.1em}\\hspace{0.33em}{{\\mathbb{R}}}^{N}, where a , b > 0 a,b\\gt 0 are given constants, ε \\varepsilon is a small parameter, 2 s ∗ = 2 N N − 2 s {2}_{s}^{\\ast }=\\frac{2N}{N-2s} with 0 < s < 1 0\\lt s\\lt 1 and N ≥ 4 s N\\ge 4s . We first prove the nondegeneracy of positive solutions when ε = 0 \\varepsilon =0 . In particular, we prove that uniqueness breaks down for dimensions N > 4 s N\\gt 4s , i.e., we show that there exist two nondegenerate positive solutions which seem to be completely different from the result of the fractional Schrödinger equation or the low-dimensional fractional Kirchhoff equation. Using the finite-dimensional reduction method and perturbed arguments, we also obtain the existence of positive solutions to the singular perturbation problems for ε \\varepsilon small.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/anona-2022-0234","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 14

Abstract

Abstract This article deals with the following fractional Kirchhoff problem with critical exponent a + b ∫ R N ∣ ( − Δ ) s 2 u ∣ 2 d x ( − Δ ) s u = ( 1 + ε K ( x ) ) u 2 s ∗ − 1 , in R N , \left(a+b\mathop{\int }\limits_{{{\mathbb{R}}}^{N}}| {\left(-\Delta )}^{\tfrac{s}{2}}u\hspace{-0.25em}{| }^{2}{\rm{d}}x\right){\left(-\Delta )}^{s}u=\left(1+\varepsilon K\left(x)){u}^{{2}_{s}^{\ast }-1},\hspace{1.0em}\hspace{0.1em}\text{in}\hspace{0.1em}\hspace{0.33em}{{\mathbb{R}}}^{N}, where a , b > 0 a,b\gt 0 are given constants, ε \varepsilon is a small parameter, 2 s ∗ = 2 N N − 2 s {2}_{s}^{\ast }=\frac{2N}{N-2s} with 0 < s < 1 0\lt s\lt 1 and N ≥ 4 s N\ge 4s . We first prove the nondegeneracy of positive solutions when ε = 0 \varepsilon =0 . In particular, we prove that uniqueness breaks down for dimensions N > 4 s N\gt 4s , i.e., we show that there exist two nondegenerate positive solutions which seem to be completely different from the result of the fractional Schrödinger equation or the low-dimensional fractional Kirchhoff equation. Using the finite-dimensional reduction method and perturbed arguments, we also obtain the existence of positive solutions to the singular perturbation problems for ε \varepsilon small.
奇异摄动分数阶Kirchhoff方程的临界情形
摘要本文讨论了临界指数为a+bŞRNŞ(−Δ)s2 uŞ2 d x(−Δleft(-\Delta)}^{s}u=\left(1+\varepsilon K\left(x)){u}^{{2}_{s} ^{\ast}-1},\ hspace{1.0em}\ hspace}0.1em}\text{in}\ tspace{0.1em}\ hspace{0.33em}{\mathbb{R}}}}^{N},其中a,b>0 a,b\gt 0是给定的常数,ε\varepsilon是一个小参数,2s*=2 N−2s{2}_{s} ^{\ast}=\ frac{2N}{N-2s},其中0<s<1 0\lt s\lt 1且N≥4 s N\ ge 4s。当ε=0 \varepsilon=0时,我们首先证明了正解的非一般性。特别地,我们证明了维数N>4sN\gt 4s的唯一性分解,即,我们证明存在两个非退化正解,这两个解似乎与分数阶薛定谔方程或低维分数阶基尔霍夫方程的结果完全不同。利用有限维约简方法和扰动变元,我们还得到了ε\varepsilon small奇异扰动问题正解的存在性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信