Orbital integrals and K-theory classes

IF 0.5 Q3 MATHEMATICS
P. Hochs, Han Wang
{"title":"Orbital integrals and K-theory classes","authors":"P. Hochs, Han Wang","doi":"10.2140/akt.2019.4.185","DOIUrl":null,"url":null,"abstract":"Let $G$ be a semisimple Lie group with discrete series. We use maps $K_0(C^*_rG)\\to \\mathbb{C}$ defined by orbital integrals to recover group theoretic information about $G$, including information contained in $K$-theory classes not associated to the discrete series. An important tool is a fixed point formula for equivariant indices obtained by the authors in an earlier paper. Applications include a tool to distinguish classes in $K_0(C^*_rG)$, the (known) injectivity of Dirac induction, versions of Selberg's principle in $K$-theory and for matrix coefficients of the discrete series, a Tannaka-type duality, and a way to extract characters of representations from $K$-theory. Finally, we obtain a continuity property near the identity element of $G$ of families of maps $K_0(C^*_rG)\\to \\mathbb{C}$, parametrised by semisimple elements of $G$, defined by stable orbital integrals. This implies a continuity property for $L$-packets of discrete series characters, which in turn can be used to deduce a (well-known) expression for formal degrees of discrete series representations from Harish-Chandra's character formula.","PeriodicalId":42182,"journal":{"name":"Annals of K-Theory","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2018-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2140/akt.2019.4.185","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of K-Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/akt.2019.4.185","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 11

Abstract

Let $G$ be a semisimple Lie group with discrete series. We use maps $K_0(C^*_rG)\to \mathbb{C}$ defined by orbital integrals to recover group theoretic information about $G$, including information contained in $K$-theory classes not associated to the discrete series. An important tool is a fixed point formula for equivariant indices obtained by the authors in an earlier paper. Applications include a tool to distinguish classes in $K_0(C^*_rG)$, the (known) injectivity of Dirac induction, versions of Selberg's principle in $K$-theory and for matrix coefficients of the discrete series, a Tannaka-type duality, and a way to extract characters of representations from $K$-theory. Finally, we obtain a continuity property near the identity element of $G$ of families of maps $K_0(C^*_rG)\to \mathbb{C}$, parametrised by semisimple elements of $G$, defined by stable orbital integrals. This implies a continuity property for $L$-packets of discrete series characters, which in turn can be used to deduce a (well-known) expression for formal degrees of discrete series representations from Harish-Chandra's character formula.
轨道积分和k理论类
设$G$是一个具有离散级数的半单李群。我们使用由轨道积分定义的映射$K_0(C^*_rG)\to\mathbb{C}$来恢复关于$G$的群论信息,包括包含在与离散级数无关的$K$理论类中的信息。一个重要的工具是作者在早期论文中获得的等变指数的不动点公式。应用包括区分$K_0(C^*_rG)$中的类的工具,Dirac归纳的(已知的)内射性,$K$-理论中Selberg原理的版本和离散级数的矩阵系数,Tannaka型对偶,以及从$K$理论中提取表示特征的方法。最后,我们得到了映射族$K_0(C^*_rG)\to\mathbb{C}$的单位元$G$附近的连续性性质,该性质由稳定轨道积分定义的$G$的半单元参数化。这意味着离散序列字符的$L$-包的连续性,这反过来可以用来从Harish Chandra的字符公式推导离散序列表示的形式度的(众所周知的)表达式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annals of K-Theory
Annals of K-Theory MATHEMATICS-
CiteScore
1.10
自引率
0.00%
发文量
12
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信