The Hilbert Transform for Dunkl Differential Operators Associated to the Reflection Group ℤ2

Pub Date : 2023-01-23 DOI:10.1007/s10476-023-0189-3
I. A. López P
{"title":"The Hilbert Transform for Dunkl Differential Operators Associated to the Reflection Group ℤ2","authors":"I. A. López P","doi":"10.1007/s10476-023-0189-3","DOIUrl":null,"url":null,"abstract":"<div><p>The aim of this paper is to introduce the Dunkl—Hilbert transform <i>H</i><sup><i>k</i></sup>, with <i>k</i> ≥ 0, induced by the Dunkl differential operator and associated with the reflection group ℤ<sub>2</sub>. For this end, we establish that the Dunkl—Poisson kernel and the conjugate Dunkl—Poisson kernel satisfy the Cauchy—Riemann equations in the Dunkl context. We prove the continuity of <i>H</i><sup><i>k</i></sup> on <i>L</i><sup>p</sup>(<i>w</i><sub><i>k</i></sub>) for 1 &lt; <i>p</i> &lt; ∞, where <i>w</i><sub><i>k</i></sub>(<i>x</i>) = ∣<i>x</i>∣<sup>2<i>k</i></sup>. Finally, we introduce the maximal Hilbert operator <i>H</i><span>\n <sup><i>k</i></sup><sub>*</sub>\n \n </span> and establish an analogue of Cotlar’s theorem.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10476-023-0189-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The aim of this paper is to introduce the Dunkl—Hilbert transform Hk, with k ≥ 0, induced by the Dunkl differential operator and associated with the reflection group ℤ2. For this end, we establish that the Dunkl—Poisson kernel and the conjugate Dunkl—Poisson kernel satisfy the Cauchy—Riemann equations in the Dunkl context. We prove the continuity of Hk on Lp(wk) for 1 < p < ∞, where wk(x) = ∣x2k. Finally, we introduce the maximal Hilbert operator H k* and establish an analogue of Cotlar’s theorem.

分享
查看原文
与反射群有关的Dunkl微分算子的Hilbert变换
本文的目的是介绍由Dunkl微分算子诱导并与反射群相关的k≥0的Dunkl-Hilbert变换Hkℤ2.为此,我们建立了Dunkl-Pisson核和共轭Dunkl-Passon核在Dunkl上下文中满足Cauchy-Riemann方程。我们证明了Hk在Lp(wk)上对于1<;p<∞,式中,wk(x)=ŞxŞ2k。最后,我们引入了最大希尔伯特算子Hk*,并建立了Cotlar定理的一个类似。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信