Local characteristics and tangency of vector-valued martingales

IF 1.3 Q2 STATISTICS & PROBABILITY
I. Yaroslavtsev
{"title":"Local characteristics and tangency of vector-valued martingales","authors":"I. Yaroslavtsev","doi":"10.1214/19-ps337","DOIUrl":null,"url":null,"abstract":"This paper is devoted to tangent martingales in Banach spaces. We provide the definition of tangency through local characteristics, basic $L^p$- and $\\phi$-estimates, a precise construction of a decoupled tangent martingale, new estimates for vector-valued stochastic integrals, and several other claims concerning tangent martingales and local characteristics in infinite dimensions. This work extends various real-valued and vector-valued results in this direction e.g. due to Grigelionis, Hitczenko, Jacod, Kallenberg, Kwapien, McConnell, and Woyczynski. The vast majority of the assertions presented in the paper is done under the sufficient and necessary UMD assumption on the corresponding Banach space.","PeriodicalId":46216,"journal":{"name":"Probability Surveys","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2019-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Probability Surveys","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/19-ps337","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 5

Abstract

This paper is devoted to tangent martingales in Banach spaces. We provide the definition of tangency through local characteristics, basic $L^p$- and $\phi$-estimates, a precise construction of a decoupled tangent martingale, new estimates for vector-valued stochastic integrals, and several other claims concerning tangent martingales and local characteristics in infinite dimensions. This work extends various real-valued and vector-valued results in this direction e.g. due to Grigelionis, Hitczenko, Jacod, Kallenberg, Kwapien, McConnell, and Woyczynski. The vast majority of the assertions presented in the paper is done under the sufficient and necessary UMD assumption on the corresponding Banach space.
向量值鞅的局部特征与切性
本文研究Banach空间中的切鞅。我们通过局部特征,基本的$L^p$-和$\phi$-估计,解耦切线鞅的精确构造,向量值随机积分的新估计,以及关于无穷维中的切线鞅和局部特征的其他一些主张,提供了相切的定义。这项工作在这个方向上扩展了各种实值和向量值的结果,例如由于Grigelionis、Hitzhenko、Jacobd、Kallenberg、Kwapien、McConnell和Woyczynski。本文提出的绝大多数断言都是在相应Banach空间上的充分必要UMD假设下完成的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Probability Surveys
Probability Surveys STATISTICS & PROBABILITY-
CiteScore
4.70
自引率
0.00%
发文量
9
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信