{"title":"Improved Resolvent Approximations in Homogenization of Second-Order Operators with Periodic Coefficients","authors":"S. E. Pastukhova","doi":"10.1134/S0016266322040086","DOIUrl":null,"url":null,"abstract":"<p> For elliptic divergent self-adjoint second-order operators with <span>\\(\\varepsilon\\)</span>-periodic measurable coefficients acting on the whole space <span>\\(\\mathbb{R}^d\\)</span>, resolvent approximations in the operator norm <span>\\(\\|\\!\\,\\boldsymbol\\cdot\\,\\!\\|_{H^1\\to H^1}\\)</span> with remainder of order <span>\\(\\varepsilon^2\\)</span> as <span>\\(\\varepsilon\\to 0\\)</span> are found by the method of two-scale expansions with the use of smoothing. </p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1134/S0016266322040086","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
For elliptic divergent self-adjoint second-order operators with \(\varepsilon\)-periodic measurable coefficients acting on the whole space \(\mathbb{R}^d\), resolvent approximations in the operator norm \(\|\!\,\boldsymbol\cdot\,\!\|_{H^1\to H^1}\) with remainder of order \(\varepsilon^2\) as \(\varepsilon\to 0\) are found by the method of two-scale expansions with the use of smoothing.