Improved Resolvent Approximations in Homogenization of Second-Order Operators with Periodic Coefficients

Pub Date : 2023-04-13 DOI:10.1134/S0016266322040086
S. E. Pastukhova
{"title":"Improved Resolvent Approximations in Homogenization of Second-Order Operators with Periodic Coefficients","authors":"S. E. Pastukhova","doi":"10.1134/S0016266322040086","DOIUrl":null,"url":null,"abstract":"<p> For elliptic divergent self-adjoint second-order operators with <span>\\(\\varepsilon\\)</span>-periodic measurable coefficients acting on the whole space <span>\\(\\mathbb{R}^d\\)</span>, resolvent approximations in the operator norm <span>\\(\\|\\!\\,\\boldsymbol\\cdot\\,\\!\\|_{H^1\\to H^1}\\)</span> with remainder of order <span>\\(\\varepsilon^2\\)</span> as <span>\\(\\varepsilon\\to 0\\)</span> are found by the method of two-scale expansions with the use of smoothing. </p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1134/S0016266322040086","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

For elliptic divergent self-adjoint second-order operators with \(\varepsilon\)-periodic measurable coefficients acting on the whole space \(\mathbb{R}^d\), resolvent approximations in the operator norm \(\|\!\,\boldsymbol\cdot\,\!\|_{H^1\to H^1}\) with remainder of order \(\varepsilon^2\) as \(\varepsilon\to 0\) are found by the method of two-scale expansions with the use of smoothing.

分享
查看原文
二阶周期系数算子齐次化的改进求解逼近
对于整个空间\(\mathbb{R}^d\)上具有\(\varepsilon\) -周期可测系数的椭圆发散自伴随二阶算子,利用平滑的双尺度展开方法,得到了算子范数\(\|\!\,\boldsymbol\cdot\,\!\|_{H^1\to H^1}\)上余阶为\(\varepsilon^2\)为\(\varepsilon\to 0\)的可解逼近。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信