{"title":"A note on simultaneous approximation on Vitushkin\n sets","authors":"R. Mortini, R. Rupp","doi":"10.32917/H2020009","DOIUrl":null,"url":null,"abstract":"Given a planar Jordan domain G with rectifiable boundary, it is well known that smooth functions on the closure of G do not always admit smooth extensions to C. Further conditions on the boundary are necessary to guarantee such extensions. On the other hand, Weierstrass’ approximation theorem yields polynomials converging uniformly to f A CðG;CÞ. In this note we show that for Vitushkin sets K with K 1⁄4 K it is always possible to uniformly approximate on K the smooth function f A C ðK ;CÞ by smooth functions fn in C so that also qfn converges uniformly to qf on K. As a byproduct we deduce from its ‘‘smooth in a neighborhood version’’ the general Gauss integral theorem for functions whose partial derivatives in G merely admit continuous extensions to its boundary.","PeriodicalId":55054,"journal":{"name":"Hiroshima Mathematical Journal","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hiroshima Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.32917/H2020009","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Given a planar Jordan domain G with rectifiable boundary, it is well known that smooth functions on the closure of G do not always admit smooth extensions to C. Further conditions on the boundary are necessary to guarantee such extensions. On the other hand, Weierstrass’ approximation theorem yields polynomials converging uniformly to f A CðG;CÞ. In this note we show that for Vitushkin sets K with K 1⁄4 K it is always possible to uniformly approximate on K the smooth function f A C ðK ;CÞ by smooth functions fn in C so that also qfn converges uniformly to qf on K. As a byproduct we deduce from its ‘‘smooth in a neighborhood version’’ the general Gauss integral theorem for functions whose partial derivatives in G merely admit continuous extensions to its boundary.
给定具有可直边界的平面Jordan域G,众所周知,G的闭包上的光滑函数并不总是允许C的光滑扩展。边界上的进一步条件是保证这种扩展所必需的。另一方面,Weierstrass的近似定理产生了一致收敛到fAC?G的多项式;CÞ。在这个注记中,我们证明了对于K为1⁄4K的Vitushkin集K,总是可以在K上一致逼近光滑函数f A CğK;通过C中的光滑函数fn,使得qfn也一致收敛于K上的qf。作为副产品,我们从其“邻域中的光滑版本”中推导出G中偏导数仅允许其边界连续扩展的函数的一般高斯积分定理。
期刊介绍:
Hiroshima Mathematical Journal (HMJ) is a continuation of Journal of Science of the Hiroshima University, Series A, Vol. 1 - 24 (1930 - 1960), and Journal of Science of the Hiroshima University, Series A - I , Vol. 25 - 34 (1961 - 1970).
Starting with Volume 4 (1974), each volume of HMJ consists of three numbers annually. This journal publishes original papers in pure and applied mathematics. HMJ is an (electronically) open access journal from Volume 36, Number 1.