The effects of strain rate on the effective yield strength of high-strength steel at elevated temperatures

IF 0.9 Q4 CONSTRUCTION & BUILDING TECHNOLOGY
K. Kimura, T. Onogi, F. Ozaki
{"title":"The effects of strain rate on the effective yield strength of high-strength steel at elevated temperatures","authors":"K. Kimura, T. Onogi, F. Ozaki","doi":"10.1108/jsfe-01-2023-0014","DOIUrl":null,"url":null,"abstract":"PurposeThis work examines the effects of strain rate on the effective yield strength of high-strength steel at elevated temperatures, through tensile coupon tests at various strain rates, to propose appropriate reduction factors considering the strain rate effect.Design/methodology/approachThe stress–strain relationships of 385 N/mm2, 440 N/mm2 and 630 N/mm2-class steel plates at elevated temperatures are examined at three strain rate values (0.3%/min, 3.0%/min and 7.5%/min), and the reduction factors for the effective yield strength at elevated temperatures are evaluated from the results. A differential evolution-based optimization is used to produce the reduction-factor curves.FindingsThe strain rate effect enhances with an increase in the standard design value of the yield point. The effective yield strength and standard design value of the yield point exhibit high linearity between 600 and 700 °C. In addition to effectively evaluating the test results, the proposed reduction-factor curves can also help determine the ultimate strength of a steel member at collapse.Originality/valueThe novelty of this study is the quantitative evaluation of the relationship between the standard design value of yield point at ambient temperature and the strain-rate effect at elevated temperatures. It has been observed that the effect of the strain rate at elevated temperatures increases with the increase in the standard design value of the yield point for various steel strength grades.","PeriodicalId":45033,"journal":{"name":"Journal of Structural Fire Engineering","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2023-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Structural Fire Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/jsfe-01-2023-0014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

PurposeThis work examines the effects of strain rate on the effective yield strength of high-strength steel at elevated temperatures, through tensile coupon tests at various strain rates, to propose appropriate reduction factors considering the strain rate effect.Design/methodology/approachThe stress–strain relationships of 385 N/mm2, 440 N/mm2 and 630 N/mm2-class steel plates at elevated temperatures are examined at three strain rate values (0.3%/min, 3.0%/min and 7.5%/min), and the reduction factors for the effective yield strength at elevated temperatures are evaluated from the results. A differential evolution-based optimization is used to produce the reduction-factor curves.FindingsThe strain rate effect enhances with an increase in the standard design value of the yield point. The effective yield strength and standard design value of the yield point exhibit high linearity between 600 and 700 °C. In addition to effectively evaluating the test results, the proposed reduction-factor curves can also help determine the ultimate strength of a steel member at collapse.Originality/valueThe novelty of this study is the quantitative evaluation of the relationship between the standard design value of yield point at ambient temperature and the strain-rate effect at elevated temperatures. It has been observed that the effect of the strain rate at elevated temperatures increases with the increase in the standard design value of the yield point for various steel strength grades.
应变速率对高强钢高温有效屈服强度的影响
目的通过不同应变速率下的张夹试验,研究应变速率对高温下高强钢有效屈服强度的影响,提出考虑应变速率效应的适当折减系数。研究了385 N/mm2、440 N/mm2和630 N/mm2级钢板在三种应变速率值(0.3%/min、3.0%/min和7.5%/min)下的高温应力-应变关系,并根据结果评估了高温下有效屈服强度的折减系数。采用基于差分进化的优化方法生成了还原因子曲线。结果:应变率效应随着屈服点标准设计值的增加而增强。有效屈服强度和屈服点的标准设计值在600 ~ 700℃之间呈高度线性关系。除了有效地评价试验结果外,所提出的折减系数曲线还可以帮助确定钢构件在倒塌时的极限强度。独创性/价值本研究的新颖之处在于定量评价了常温下屈服点的标准设计值与高温下应变率效应之间的关系。已经观察到,在高温下应变速率的影响随着屈服点的标准设计值的增加而增加。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Structural Fire Engineering
Journal of Structural Fire Engineering CONSTRUCTION & BUILDING TECHNOLOGY-
CiteScore
2.20
自引率
10.00%
发文量
28
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信