Development of water-based CuO, TiO2 and ZnO nanofluids and comparative study of thermal conductivity and viscosity

IF 1.9 4区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
Pramana Pub Date : 2023-04-13 DOI:10.1007/s12043-023-02546-9
N B Girhe, S N Botewad, C V More, S B Kadam, P P Pawar, A B Kadam
{"title":"Development of water-based CuO, TiO2 and ZnO nanofluids and comparative study of thermal conductivity and viscosity","authors":"N B Girhe,&nbsp;S N Botewad,&nbsp;C V More,&nbsp;S B Kadam,&nbsp;P P Pawar,&nbsp;A B Kadam","doi":"10.1007/s12043-023-02546-9","DOIUrl":null,"url":null,"abstract":"<div><p>The present investigation elucidated the influence of nanoparticle volume fraction and temperature on the thermal conductivity and viscosity of water-based CuO, TiO<sub>2</sub> and ZnO nanofluids. All the nanoparticles used in the present study were synthesised using the chemical co-precipitation method and their structural and morphological features were explored by XRD and FESEM techniques, respectively. The investigated fluids were prepared using the two-step method by dispersing 0.1–0.5 wt% nanoparticles in distilled water. The thermal conductivities of all the nanofluids were determined in the temperature range of 30–70°C and viscosity in the range of 300–360 K. The experimental study demonstrated that the thermal conductivity and viscosity of the nanofluids depend on volume fraction and temperature. The dynamic viscosity and the thermal conductivity of all the nanofluids increased with the increase in the volume concentration of solid particles. The viscosity decreased and thermal conductivity increased with an increase in temperatures. When the three nanofluids are compared at the specified temperature range, CuO nanofluids showed higher thermal conductivity of 0.5856–0.6332 W<span>\\({/}\\)</span>mK for 0.1 wt% and 0.6476–0.7465 W<span>\\({/}\\)</span>mK for 0.5 wt% volume concentration and better viscosity than TiO<sub>2</sub> and ZnO nanofluids. The obtained experimental data were compared with some existing thermal conductivity and viscosity models. While comparing the thermal conductivity models, the P Bhattacharya model showed good agreement, whereas no viscosity model agrees with the experimental results. Thus, the obtained results of the prepared nanofluids are useful for conducting further studies in nanofluids.</p></div>","PeriodicalId":743,"journal":{"name":"Pramana","volume":"97 2","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s12043-023-02546-9.pdf","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pramana","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1007/s12043-023-02546-9","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

Abstract

The present investigation elucidated the influence of nanoparticle volume fraction and temperature on the thermal conductivity and viscosity of water-based CuO, TiO2 and ZnO nanofluids. All the nanoparticles used in the present study were synthesised using the chemical co-precipitation method and their structural and morphological features were explored by XRD and FESEM techniques, respectively. The investigated fluids were prepared using the two-step method by dispersing 0.1–0.5 wt% nanoparticles in distilled water. The thermal conductivities of all the nanofluids were determined in the temperature range of 30–70°C and viscosity in the range of 300–360 K. The experimental study demonstrated that the thermal conductivity and viscosity of the nanofluids depend on volume fraction and temperature. The dynamic viscosity and the thermal conductivity of all the nanofluids increased with the increase in the volume concentration of solid particles. The viscosity decreased and thermal conductivity increased with an increase in temperatures. When the three nanofluids are compared at the specified temperature range, CuO nanofluids showed higher thermal conductivity of 0.5856–0.6332 W\({/}\)mK for 0.1 wt% and 0.6476–0.7465 W\({/}\)mK for 0.5 wt% volume concentration and better viscosity than TiO2 and ZnO nanofluids. The obtained experimental data were compared with some existing thermal conductivity and viscosity models. While comparing the thermal conductivity models, the P Bhattacharya model showed good agreement, whereas no viscosity model agrees with the experimental results. Thus, the obtained results of the prepared nanofluids are useful for conducting further studies in nanofluids.

水基CuO、TiO2和ZnO纳米流体的研制及其导热性和粘度的比较研究
研究了纳米颗粒体积分数和温度对水基CuO、TiO2和ZnO纳米流体导热性和粘度的影响。采用化学共沉淀法合成了纳米颗粒,并分别采用XRD和FESEM技术对其结构和形态特征进行了研究。用0.1 ~ 0.5 wt分散两步法制备所研究的液体% nanoparticles in distilled water. The thermal conductivities of all the nanofluids were determined in the temperature range of 30–70°C and viscosity in the range of 300–360 K. The experimental study demonstrated that the thermal conductivity and viscosity of the nanofluids depend on volume fraction and temperature. The dynamic viscosity and the thermal conductivity of all the nanofluids increased with the increase in the volume concentration of solid particles. The viscosity decreased and thermal conductivity increased with an increase in temperatures. When the three nanofluids are compared at the specified temperature range, CuO nanofluids showed higher thermal conductivity of 0.5856–0.6332 W\({/}\)mK for 0.1 wt% and 0.6476–0.7465 W\({/}\)mK for 0.5 wt% volume concentration and better viscosity than TiO2 and ZnO nanofluids. The obtained experimental data were compared with some existing thermal conductivity and viscosity models. While comparing the thermal conductivity models, the P Bhattacharya model showed good agreement, whereas no viscosity model agrees with the experimental results. Thus, the obtained results of the prepared nanofluids are useful for conducting further studies in nanofluids.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Pramana
Pramana 物理-物理:综合
CiteScore
3.60
自引率
7.10%
发文量
206
审稿时长
3 months
期刊介绍: Pramana - Journal of Physics is a monthly research journal in English published by the Indian Academy of Sciences in collaboration with Indian National Science Academy and Indian Physics Association. The journal publishes refereed papers covering current research in Physics, both original contributions - research papers, brief reports or rapid communications - and invited reviews. Pramana also publishes special issues devoted to advances in specific areas of Physics and proceedings of select high quality conferences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信