{"title":"On global generation of vector bundles on the moduli space of curves from representations of \\n vertex operator algebras","authors":"Chiara Damiolini, A. Gibney","doi":"10.14231/ag-2023-010","DOIUrl":null,"url":null,"abstract":"We consider global generation of sheaves of coinvariants on the moduli space of curves given by simple modules over certain vertex operator algebras, extending results for affine VOAs at integrable levels on stable pointed rational curves. Examples where global generation fails, and further evidence of positivity are given.","PeriodicalId":48564,"journal":{"name":"Algebraic Geometry","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2021-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebraic Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.14231/ag-2023-010","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 4
Abstract
We consider global generation of sheaves of coinvariants on the moduli space of curves given by simple modules over certain vertex operator algebras, extending results for affine VOAs at integrable levels on stable pointed rational curves. Examples where global generation fails, and further evidence of positivity are given.
期刊介绍:
This journal is an open access journal owned by the Foundation Compositio Mathematica. The purpose of the journal is to publish first-class research papers in algebraic geometry and related fields. All contributions are required to meet high standards of quality and originality and are carefully screened by experts in the field.