A Multidimensional Partially Compensatory Response Time Model on Basis of the Log-Normal Distribution

IF 1.9 3区 心理学 Q2 EDUCATION & EDUCATIONAL RESEARCH
Jochen Ranger, C. König, B. Domingue, Jörg-Tobias Kuhn, Andreas Frey
{"title":"A Multidimensional Partially Compensatory Response Time Model on Basis of the Log-Normal Distribution","authors":"Jochen Ranger, C. König, B. Domingue, Jörg-Tobias Kuhn, Andreas Frey","doi":"10.3102/10769986231184153","DOIUrl":null,"url":null,"abstract":"In the existing multidimensional extensions of the log-normal response time (LNRT) model, the log response times are decomposed into a linear combination of several latent traits. These models are fully compensatory as low levels on traits can be counterbalanced by high levels on other traits. We propose an alternative multidimensional extension of the LNRT model by assuming that the response times can be decomposed into two response time components. Each response time component is generated by a one-dimensional LNRT model with a different latent trait. As the response time components—but not the traits—are related additively, the model is partially compensatory. In a simulation study, we investigate the recovery of the model’s parameters. We also investigate whether the fully and the partially compensatory LNRT model can be distinguished empirically. Findings suggest that parameter recovery is good and that the two models can be distinctly identified under certain conditions. The utility of the model in practice is demonstrated with an empirical application. In the empirical application, the partially compensatory model fits better than the fully compensatory model.","PeriodicalId":48001,"journal":{"name":"Journal of Educational and Behavioral Statistics","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Educational and Behavioral Statistics","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.3102/10769986231184153","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"EDUCATION & EDUCATIONAL RESEARCH","Score":null,"Total":0}
引用次数: 0

Abstract

In the existing multidimensional extensions of the log-normal response time (LNRT) model, the log response times are decomposed into a linear combination of several latent traits. These models are fully compensatory as low levels on traits can be counterbalanced by high levels on other traits. We propose an alternative multidimensional extension of the LNRT model by assuming that the response times can be decomposed into two response time components. Each response time component is generated by a one-dimensional LNRT model with a different latent trait. As the response time components—but not the traits—are related additively, the model is partially compensatory. In a simulation study, we investigate the recovery of the model’s parameters. We also investigate whether the fully and the partially compensatory LNRT model can be distinguished empirically. Findings suggest that parameter recovery is good and that the two models can be distinctly identified under certain conditions. The utility of the model in practice is demonstrated with an empirical application. In the empirical application, the partially compensatory model fits better than the fully compensatory model.
基于对数正态分布的多维部分补偿响应时间模型
在现有的对数正态响应时间(LNRT)模型的多维扩展中,将对数响应时间分解为多个潜在特征的线性组合。这些模型是完全补偿的,因为低水平的性状可以被高水平的其他性状抵消。我们通过假设响应时间可以分解为两个响应时间组件,提出了LNRT模型的另一种多维扩展。每个反应时间分量由具有不同潜在特征的一维LNRT模型生成。由于响应时间分量(而非特征)是加性相关的,因此该模型具有部分补偿性。在模拟研究中,我们研究了模型参数的恢复。我们还研究了完全代偿和部分代偿的LNRT模型是否可以区分。结果表明,参数恢复良好,在一定条件下,两种模型可以明显识别。通过实例验证了该模型在实际应用中的实用性。在实证应用中,部分补偿模型比完全补偿模型拟合效果更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.40
自引率
4.20%
发文量
21
期刊介绍: Journal of Educational and Behavioral Statistics, sponsored jointly by the American Educational Research Association and the American Statistical Association, publishes articles that are original and provide methods that are useful to those studying problems and issues in educational or behavioral research. Typical papers introduce new methods of analysis. Critical reviews of current practice, tutorial presentations of less well known methods, and novel applications of already-known methods are also of interest. Papers discussing statistical techniques without specific educational or behavioral interest or focusing on substantive results without developing new statistical methods or models or making novel use of existing methods have lower priority. Simulation studies, either to demonstrate properties of an existing method or to compare several existing methods (without providing a new method), also have low priority. The Journal of Educational and Behavioral Statistics provides an outlet for papers that are original and provide methods that are useful to those studying problems and issues in educational or behavioral research. Typical papers introduce new methods of analysis, provide properties of these methods, and an example of use in education or behavioral research. Critical reviews of current practice, tutorial presentations of less well known methods, and novel applications of already-known methods are also sometimes accepted. Papers discussing statistical techniques without specific educational or behavioral interest or focusing on substantive results without developing new statistical methods or models or making novel use of existing methods have lower priority. Simulation studies, either to demonstrate properties of an existing method or to compare several existing methods (without providing a new method), also have low priority.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信