{"title":"On Maximal Extensions of Nilpotent Lie Algebras","authors":"V. V. Gorbatsevich","doi":"10.1134/S0016266322040037","DOIUrl":null,"url":null,"abstract":"<p> Extensions of finite-dimensional nilpotent Lie algebras, in particular, solvable extensions, are considered. Some properties of maximal extensions are proved. A counterexample to L. Šnobl’s conjecture concerning the uniqueness of maximal solvable extensions is constructed. </p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1134/S0016266322040037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Extensions of finite-dimensional nilpotent Lie algebras, in particular, solvable extensions, are considered. Some properties of maximal extensions are proved. A counterexample to L. Šnobl’s conjecture concerning the uniqueness of maximal solvable extensions is constructed.