On an Elliptic Operator Degenerating on the Boundary

IF 0.6 4区 数学 Q3 MATHEMATICS
V. E. Nazaikinskii
{"title":"On an Elliptic Operator Degenerating on the Boundary","authors":"V. E. Nazaikinskii","doi":"10.1134/S0016266322040104","DOIUrl":null,"url":null,"abstract":"<p> Let <span>\\(\\Omega\\subset\\mathbb{R}^n\\)</span> be a bounded domain with smooth boundary <span>\\(\\partial\\Omega\\)</span>, let <span>\\(D(x)\\in C^\\infty(\\overline\\Omega)\\)</span> be a defining function of the boundary, and let <span>\\(B(x)\\in C^\\infty(\\overline\\Omega)\\)</span> be an <span>\\(n\\times n\\)</span> matrix function with self-adjoint positive definite values <span>\\(B(x )=B^*(x)&gt;0\\)</span> for all <span>\\(x\\in\\overline\\Omega\\)</span> The Friedrichs extension of the minimal operator given by the differential expression <span>\\(\\mathcal{A}_0=-\\langle\\nabla,D(x )B(x)\\nabla\\rangle\\)</span> to <span>\\(C_0^\\infty(\\Omega)\\)</span> is described. </p>","PeriodicalId":575,"journal":{"name":"Functional Analysis and Its Applications","volume":"56 4","pages":"324 - 326"},"PeriodicalIF":0.6000,"publicationDate":"2023-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Functional Analysis and Its Applications","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1134/S0016266322040104","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

Let \(\Omega\subset\mathbb{R}^n\) be a bounded domain with smooth boundary \(\partial\Omega\), let \(D(x)\in C^\infty(\overline\Omega)\) be a defining function of the boundary, and let \(B(x)\in C^\infty(\overline\Omega)\) be an \(n\times n\) matrix function with self-adjoint positive definite values \(B(x )=B^*(x)>0\) for all \(x\in\overline\Omega\) The Friedrichs extension of the minimal operator given by the differential expression \(\mathcal{A}_0=-\langle\nabla,D(x )B(x)\nabla\rangle\) to \(C_0^\infty(\Omega)\) is described.

关于椭圆算子在边界上的退化
让 \(\Omega\subset\mathbb{R}^n\) 是边界光滑的有界域 \(\partial\Omega\),让 \(D(x)\in C^\infty(\overline\Omega)\) 是边界的定义函数,令 \(B(x)\in C^\infty(\overline\Omega)\) 做一个 \(n\times n\) 自伴随正定值的矩阵函数 \(B(x )=B^*(x)>0\) 对所有人 \(x\in\overline\Omega\) 微分表达式给出的最小算子的弗里德里希扩展 \(\mathcal{A}_0=-\langle\nabla,D(x )B(x)\nabla\rangle\) 到 \(C_0^\infty(\Omega)\) 描述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
7
审稿时长
>12 weeks
期刊介绍: Functional Analysis and Its Applications publishes current problems of functional analysis, including representation theory, theory of abstract and functional spaces, theory of operators, spectral theory, theory of operator equations, and the theory of normed rings. The journal also covers the most important applications of functional analysis in mathematics, mechanics, and theoretical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信