Development of an Educational Code of Deriving Equations of Motion and Analyzing Dynamic Characteristics of Multibody Closed Chain Systems using GNU Octave for a Beginner

Q4 Chemical Engineering
Yonghui Park
{"title":"Development of an Educational Code of Deriving Equations of Motion and Analyzing Dynamic Characteristics of Multibody Closed Chain Systems using GNU Octave for a Beginner","authors":"Yonghui Park","doi":"10.22055/JACM.2021.38021.3132","DOIUrl":null,"url":null,"abstract":"In this study, an automatic GNU Octave code, a free high-level language, for the educational purposes was developed to derive equations of motion and constrain equations of a multibody closed chain system and to calculate the response of the system. The code for calculating the dynamic response was developed by formulating several equations in symbolic expression and extracting differential-algebraic equations in matrix form. The code has a similar structure to the previous code for the open chained system, but it deals with the constraint equation and different numerical integration. The examples of closed chain systems provide an additional procedure to derive the constraint equations by using Lagrangian multiplication theory and to solve the differential-algebraic equations using the Runge-Kutta method. The code was made to understand the theory of analysis and the structure of calculation easily. In addition, the code has an automatic process of the derivation of the Lagrange equation and the constraint equations in matrix form after inputting the number of symbolic information such as position and velocity coordinates and design variables of the system that the user wants to review. The code was validated by comparing the dynamic response of the four-bar linkage with the same design variables and initial conditions of the previous work. By using the code, the reader's ability to exchange information such as symbols and matrices will be expected to be improved.","PeriodicalId":37801,"journal":{"name":"Applied and Computational Mechanics","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied and Computational Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22055/JACM.2021.38021.3132","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Chemical Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, an automatic GNU Octave code, a free high-level language, for the educational purposes was developed to derive equations of motion and constrain equations of a multibody closed chain system and to calculate the response of the system. The code for calculating the dynamic response was developed by formulating several equations in symbolic expression and extracting differential-algebraic equations in matrix form. The code has a similar structure to the previous code for the open chained system, but it deals with the constraint equation and different numerical integration. The examples of closed chain systems provide an additional procedure to derive the constraint equations by using Lagrangian multiplication theory and to solve the differential-algebraic equations using the Runge-Kutta method. The code was made to understand the theory of analysis and the structure of calculation easily. In addition, the code has an automatic process of the derivation of the Lagrange equation and the constraint equations in matrix form after inputting the number of symbolic information such as position and velocity coordinates and design variables of the system that the user wants to review. The code was validated by comparing the dynamic response of the four-bar linkage with the same design variables and initial conditions of the previous work. By using the code, the reader's ability to exchange information such as symbols and matrices will be expected to be improved.
初学者用GNU八度曲推导运动方程及分析多体闭链系统动力学特性教学程序的开发
在本研究中,开发了一种用于教育目的的自动GNU Octave代码,用于推导多体闭链系统的运动方程和约束方程,并计算系统的响应。通过建立若干符号表达式和提取矩阵形式的微分代数方程,编制了计算动力响应的程序。该代码与先前的开链系统代码结构相似,但处理了约束方程和不同的数值积分。闭链系统的例子为用拉格朗日乘法理论推导约束方程和用龙格-库塔法求解微分代数方程提供了一种新的方法。编写的代码便于理解分析理论和计算结构。此外,代码还具有在输入用户想要审阅的系统的位置、速度坐标、设计变量等符号信息的个数后,自动推导拉格朗日方程和矩阵形式的约束方程的过程。通过将四杆机构的动力响应与相同的设计变量和初始条件进行比较,验证了代码的有效性。通过使用这种代码,读者交换符号和矩阵等信息的能力有望得到提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied and Computational Mechanics
Applied and Computational Mechanics Engineering-Computational Mechanics
CiteScore
0.80
自引率
0.00%
发文量
10
审稿时长
14 weeks
期刊介绍: The ACM journal covers a broad spectrum of topics in all fields of applied and computational mechanics with special emphasis on mathematical modelling and numerical simulations with experimental support, if relevant. Our audience is the international scientific community, academics as well as engineers interested in such disciplines. Original research papers falling into the following areas are considered for possible publication: solid mechanics, mechanics of materials, thermodynamics, biomechanics and mechanobiology, fluid-structure interaction, dynamics of multibody systems, mechatronics, vibrations and waves, reliability and durability of structures, structural damage and fracture mechanics, heterogenous media and multiscale problems, structural mechanics, experimental methods in mechanics. This list is neither exhaustive nor fixed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信