Nonlinear free L\'evy--Khinchine formula and conformal mapping

IF 0.7 4区 数学 Q2 MATHEMATICS
P. Biane
{"title":"Nonlinear free L\\'evy--Khinchine formula and conformal mapping","authors":"P. Biane","doi":"10.7900/jot.2019aug02.2267","DOIUrl":null,"url":null,"abstract":"There are two natural notions of L\\'evy processes in free probability: the first one has free increments with homogeneous distributions and the other has homogeneous transition probabilities (P.~Biane, \\textit{Math. Z.} {\\bf 227}(1998), 143--174). In the two cases one can associate a Nevanlinna function to a free L\\'evy process. The Nevanlinna functions appearing in the first notion were characterized by Bercovici and Voiculescu, \\textit{Pacific J. Math.} {\\bf 153}(1992), 217--248. I give an explicit parametrization for the Nevanlinna functions associated with the second kind of free L\\'evy processes. This gives a nonlinear free L\\'evy--Khinchine formula.","PeriodicalId":50104,"journal":{"name":"Journal of Operator Theory","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2019-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Operator Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.7900/jot.2019aug02.2267","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

Abstract

There are two natural notions of L\'evy processes in free probability: the first one has free increments with homogeneous distributions and the other has homogeneous transition probabilities (P.~Biane, \textit{Math. Z.} {\bf 227}(1998), 143--174). In the two cases one can associate a Nevanlinna function to a free L\'evy process. The Nevanlinna functions appearing in the first notion were characterized by Bercovici and Voiculescu, \textit{Pacific J. Math.} {\bf 153}(1992), 217--248. I give an explicit parametrization for the Nevanlinna functions associated with the second kind of free L\'evy processes. This gives a nonlinear free L\'evy--Khinchine formula.
非线性自由L\ evy—Khinchine公式与保角映射
在自由概率中,L’evy过程有两个自然概念:第一个具有齐次分布的自由增量,另一个具有齐性转移概率(P.~Biane,\textit{Math.Z.}{\bf 227}(1998),143-174)。在这两种情况下,可以将Nevanlinna函数与自由L’evy过程相关联。第一个概念中出现的Nevanlinna函数由Bercovici和Voiculescu,\textit{Pacific J.Math.}{\bf 153}(1992),217-248进行了表征。给出了与第二类自由L’evy过程相关的Nevanlinna函数的显式参数化。这给出了一个非线性自由L'evy-Khinchine公式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
12.50%
发文量
23
审稿时长
12 months
期刊介绍: The Journal of Operator Theory is rigorously peer reviewed and endevours to publish significant articles in all areas of operator theory, operator algebras and closely related domains.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信