Cyclic-antimagic construction of ladders

M. Umar
{"title":"Cyclic-antimagic construction of ladders","authors":"M. Umar","doi":"10.30538/psrp-easl2019.0020","DOIUrl":null,"url":null,"abstract":"A simple graph G = (V, E) admits an H-covering if every edge in the edge set E(G) belongs to at least one subgraph of G isomorphic to a given graph H. A graph G having an H-covering is called (a, d)-H-antimagic if the function h : V(G) ∪ E(G)→ {1, 2, . . . , |V(G)|+ |E(G)|} defines a bijective map such that, for all subgraphs H′ of G isomorphic to H, the sums of labels of all vertices and edges belonging to H′ constitute an arithmetic progression with the initial term a and the common difference d. Such a graph is named as super (a, d)-H-antimagic if h(V(G)) = {1, 2, 3, . . . , |V(G)|}. For d = 0, the super (a, d)-H-antimagic graph is called H-supermagic. In the present paper, we study the existence of super (a, d)-cycle-antimagic labelings of ladder graphs for certain differences d.","PeriodicalId":11518,"journal":{"name":"Engineering and Applied Science Letters","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering and Applied Science Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30538/psrp-easl2019.0020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

A simple graph G = (V, E) admits an H-covering if every edge in the edge set E(G) belongs to at least one subgraph of G isomorphic to a given graph H. A graph G having an H-covering is called (a, d)-H-antimagic if the function h : V(G) ∪ E(G)→ {1, 2, . . . , |V(G)|+ |E(G)|} defines a bijective map such that, for all subgraphs H′ of G isomorphic to H, the sums of labels of all vertices and edges belonging to H′ constitute an arithmetic progression with the initial term a and the common difference d. Such a graph is named as super (a, d)-H-antimagic if h(V(G)) = {1, 2, 3, . . . , |V(G)|}. For d = 0, the super (a, d)-H-antimagic graph is called H-supermagic. In the present paper, we study the existence of super (a, d)-cycle-antimagic labelings of ladder graphs for certain differences d.
梯子的循环反魔法构造
一个简单图G=(V,E)允许H-覆盖,如果边集E(G)中的每条边都属于同构于给定图H的G的至少一个子图。具有H-覆盖的图G称为(A,d)-H-反映射,如果函数H:V(G)ŞE(G→ {1,2,…,|V(G)|+|E(G)|}定义了一个双射映射,使得对于同构于H的G的所有子图H′,属于H′的所有顶点和边的标号之和构成了一个具有初始项a和公共差d的算术级数。如果H(V(G))={1、2、3,…,| V(G。对于d=0,超(a,d)-H-反能图称为H-超魔术。本文研究了某些差分d的梯形图的超(a,d)-环反能标记的存在性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信