Decomposition of contribution to runoff changes and spatial differences of major tributaries in the middle reaches of the Yellow River based on the Budyko framework
Yanyu Dai, Fan Lu, B. Ruan, Xinyi Song, Yu Du, Yiran Xu
{"title":"Decomposition of contribution to runoff changes and spatial differences of major tributaries in the middle reaches of the Yellow River based on the Budyko framework","authors":"Yanyu Dai, Fan Lu, B. Ruan, Xinyi Song, Yu Du, Yiran Xu","doi":"10.2166/nh.2023.061","DOIUrl":null,"url":null,"abstract":"\n Quantitative differentiation of climate and human activities on runoff is important for water resources management and future water resources trend prediction. In recent years, runoff in the middle reaches of the Yellow River (MRYR) has decreased dramatically. Many studies have analyzed the causes of runoff reduction, but there is still a lack of understanding of the spatial differences in runoff contributions and their causes. Therefore, this study quantitatively distinguishes the contributions of climate and human activities to runoff changes in nine sub-basins of the MRYR based on the Budyko framework and analyses the differences in the contributions of different basins and their causes. The results show that the runoff in the nine sub-basins decreases significantly and the precipitation increases from northwest to southeast. The contribution of human activities to runoff is greater than that of climate change, especially in the Huangfuchuan (HF) River and Kuye (KY) River basins, where the contribution of human activities to runoff exceeds 90%. The greater impact of human activities in HF River and KY River is due to the significantly higher water use growth rate and normalized vegetation index trends than in other areas.","PeriodicalId":55040,"journal":{"name":"Hydrology Research","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2023-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hydrology Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.2166/nh.2023.061","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 0
Abstract
Quantitative differentiation of climate and human activities on runoff is important for water resources management and future water resources trend prediction. In recent years, runoff in the middle reaches of the Yellow River (MRYR) has decreased dramatically. Many studies have analyzed the causes of runoff reduction, but there is still a lack of understanding of the spatial differences in runoff contributions and their causes. Therefore, this study quantitatively distinguishes the contributions of climate and human activities to runoff changes in nine sub-basins of the MRYR based on the Budyko framework and analyses the differences in the contributions of different basins and their causes. The results show that the runoff in the nine sub-basins decreases significantly and the precipitation increases from northwest to southeast. The contribution of human activities to runoff is greater than that of climate change, especially in the Huangfuchuan (HF) River and Kuye (KY) River basins, where the contribution of human activities to runoff exceeds 90%. The greater impact of human activities in HF River and KY River is due to the significantly higher water use growth rate and normalized vegetation index trends than in other areas.
期刊介绍:
Hydrology Research provides international coverage on all aspects of hydrology in its widest sense, and welcomes the submission of papers from across the subject. While emphasis is placed on studies of the hydrological cycle, the Journal also covers the physics and chemistry of water. Hydrology Research is intended to be a link between basic hydrological research and the practical application of scientific results within the broad field of water management.