Performance characterization of a novel PV/T panel with nanofluids under the climatic conditions of Muscat, Oman

IF 2.4 Q3 ENERGY & FUELS
A. Husain, N. Al-Rawahi, N. Al-Azri, M.R.S. Al-Naabi, Musaab El-Tahir
{"title":"Performance characterization of a novel PV/T panel with nanofluids under the climatic conditions of Muscat, Oman","authors":"A. Husain, N. Al-Rawahi, N. Al-Azri, M.R.S. Al-Naabi, Musaab El-Tahir","doi":"10.14710/ijred.2023.53287","DOIUrl":null,"url":null,"abstract":"The study presents an experimental analysis of a novel mini channels-based Photovoltaic/Thermal (PV/T) panel with nanofluid flow. The design consists of a PV plate attached to an aluminum substrate absorber plate having minichannels grooved on it to act as a solar collector and cooling mechanism for PV. The proposed design was tested for thermal and electrical efficiencies under the working fluids of water, Al2O3, and SiO2 nanofluids at 0.1% and 0.2% concentrations in water and at a flow rate of 0.005 l/s to 0.045 l/s. The experiments were carried out outdoors in a real environment and the measurements were taken for PV surface and fluid temperatures, incidence solar flux, electrical voltage, and current produced. The PV and PV/T performance was compared, and a noticeable enhancement in electrical efficiency was observed with the proposed design as compared to the bare PV module, and an appreciable augmentation in thermal efficiency was noticed when nanofluids were applied. The maximum electrical and thermal efficiencies of PV/T with 0.2% Al2O3 nanofluid were 19.1% and 73.4%, respectively; whereas for bare PV panels, the electrical efficiency was 18.7%. The Al2O3 nanofluid at 0.2% exhibited more than a 10% increase in thermal efficiency compared to water as a working fluid in PV/T.","PeriodicalId":44938,"journal":{"name":"International Journal of Renewable Energy Development-IJRED","volume":" ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2023-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Renewable Energy Development-IJRED","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14710/ijred.2023.53287","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

The study presents an experimental analysis of a novel mini channels-based Photovoltaic/Thermal (PV/T) panel with nanofluid flow. The design consists of a PV plate attached to an aluminum substrate absorber plate having minichannels grooved on it to act as a solar collector and cooling mechanism for PV. The proposed design was tested for thermal and electrical efficiencies under the working fluids of water, Al2O3, and SiO2 nanofluids at 0.1% and 0.2% concentrations in water and at a flow rate of 0.005 l/s to 0.045 l/s. The experiments were carried out outdoors in a real environment and the measurements were taken for PV surface and fluid temperatures, incidence solar flux, electrical voltage, and current produced. The PV and PV/T performance was compared, and a noticeable enhancement in electrical efficiency was observed with the proposed design as compared to the bare PV module, and an appreciable augmentation in thermal efficiency was noticed when nanofluids were applied. The maximum electrical and thermal efficiencies of PV/T with 0.2% Al2O3 nanofluid were 19.1% and 73.4%, respectively; whereas for bare PV panels, the electrical efficiency was 18.7%. The Al2O3 nanofluid at 0.2% exhibited more than a 10% increase in thermal efficiency compared to water as a working fluid in PV/T.
阿曼马斯喀特气候条件下新型纳米流体PV/T面板的性能表征
研究了一种新型的基于纳米流体流动的微型通道光伏/热(PV/T)面板的实验分析。该设计包括附着在铝基板上的光伏板,吸收板上有小孔,作为太阳能收集器和光伏的冷却机制。在水、Al2O3和SiO2纳米流体的浓度分别为0.1%和0.2%,流速为0.005 l/s至0.045 l/s的情况下,测试了该设计方案的热效率和电效率。实验在室外真实环境中进行,测量了PV表面和流体温度、入射太阳通量、电压和产生的电流。将PV和PV/T性能进行比较,发现与裸PV组件相比,所提出的设计显著提高了电效率,并且当应用纳米流体时,注意到热效率显着提高。添加0.2% Al2O3纳米流体时,PV/T的最大电效率和热效率分别为19.1%和73.4%;而裸光伏板的电效率为18.7%。在PV/T中,与水相比,0.2% Al2O3纳米流体的热效率提高了10%以上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.50
自引率
16.00%
发文量
83
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信