Matthew J Osmond, Rachel R. Mizenko, Melissa D. Krebs
{"title":"Rapidly Curing Chitosan Calcium Phosphate Composites as Dental Pulp Capping Agents","authors":"Matthew J Osmond, Rachel R. Mizenko, Melissa D. Krebs","doi":"10.20900/RMF20190002","DOIUrl":null,"url":null,"abstract":"Background: Dental caries are the most prevalent yet preventable disease in both children and adults. Current treatments cannot adequately restore tooth function while concurrently supporting the regeneration of dentin tissue. The materials presented here were designed to create a rapid curing, mechanically stable and biocompatible pulp capping agent. Methods: In this study, a rapidly curing dental composite was formed using carboxymethyl-chitosan, hydroxyapatite whiskers, and a diglycidyl ether. Properties of the composites that were measured include gelation, mechanical properties, and surface characteristics. Human dental pulp stem cells were cultured on the composites to determine cytocompatibility, proliferation, and differentiation potential. Results: All composite components were verified using XRD and ATR-FTIR. The compressive modulus was determined to be greater than 600 kPa, swelling less than 2%, and degradation less than 10%. Composites supported the growth of cells for 3 weeks. qPCR was used to measure the pre-odontoblastic marker, RUNX2. The expression of osteocalcin was measured with confocal microscopy, which showed the differentiation to odontoblastic cells. Conclusions: These materials meet the initial goals for a regenerative pulp capping agent. Further investigation could lead to the next generation of pulp capping and dental filling materials.","PeriodicalId":93226,"journal":{"name":"Regenerative medicine frontiers","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Regenerative medicine frontiers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20900/RMF20190002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Background: Dental caries are the most prevalent yet preventable disease in both children and adults. Current treatments cannot adequately restore tooth function while concurrently supporting the regeneration of dentin tissue. The materials presented here were designed to create a rapid curing, mechanically stable and biocompatible pulp capping agent. Methods: In this study, a rapidly curing dental composite was formed using carboxymethyl-chitosan, hydroxyapatite whiskers, and a diglycidyl ether. Properties of the composites that were measured include gelation, mechanical properties, and surface characteristics. Human dental pulp stem cells were cultured on the composites to determine cytocompatibility, proliferation, and differentiation potential. Results: All composite components were verified using XRD and ATR-FTIR. The compressive modulus was determined to be greater than 600 kPa, swelling less than 2%, and degradation less than 10%. Composites supported the growth of cells for 3 weeks. qPCR was used to measure the pre-odontoblastic marker, RUNX2. The expression of osteocalcin was measured with confocal microscopy, which showed the differentiation to odontoblastic cells. Conclusions: These materials meet the initial goals for a regenerative pulp capping agent. Further investigation could lead to the next generation of pulp capping and dental filling materials.