Poisson approximation of induced subgraph counts in an inhomogeneous random intersection graph model

IF 0.5 4区 数学 Q3 MATHEMATICS
Y. Shang
{"title":"Poisson approximation of induced subgraph counts in an inhomogeneous random intersection graph model","authors":"Y. Shang","doi":"10.4134/BKMS.B180971","DOIUrl":null,"url":null,"abstract":"In this paper, we consider a class of inhomogeneous random intersection graphs by assigning random weight to each vertex and two vertices are adjacent if they choose some common elements. In the inhomogeneous random intersection graph model, vertices with larger weights are more likely to acquire many elements. We show the Poisson convergence of the number of induced copies of a fixed subgraph as the number of vertices n and the number of elements m, scaling as m=⌊βnα⌋ (α,β>0), tend to infinity.","PeriodicalId":55301,"journal":{"name":"Bulletin of the Korean Mathematical Society","volume":"56 1","pages":"1199-1210"},"PeriodicalIF":0.5000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Korean Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4134/BKMS.B180971","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

Abstract

In this paper, we consider a class of inhomogeneous random intersection graphs by assigning random weight to each vertex and two vertices are adjacent if they choose some common elements. In the inhomogeneous random intersection graph model, vertices with larger weights are more likely to acquire many elements. We show the Poisson convergence of the number of induced copies of a fixed subgraph as the number of vertices n and the number of elements m, scaling as m=⌊βnα⌋ (α,β>0), tend to infinity.
非齐次随机交图模型中诱导子图计数的Poisson近似
本文考虑一类非齐次随机交图,通过给每个顶点分配随机权重,并且如果两个顶点选择一些公共元素,则它们是相邻的。在非均匀随机相交图模型中,权重较大的顶点更有可能获得许多元素。我们展示了固定子图的诱导拷贝数作为顶点数n和元素数m的泊松收敛性,标度为m=βnα(α,β>0),趋向于无穷大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.80
自引率
20.00%
发文量
0
审稿时长
6 months
期刊介绍: This journal endeavors to publish significant research of broad interests in pure and applied mathematics. One volume is published each year, and each volume consists of six issues (January, March, May, July, September, November).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信