{"title":"A metrizable semitopological semilattice with non-closed partial order","authors":"T. Banakh, S. Bardyla, A. Ravsky","doi":"10.1515/taa-2020-0006","DOIUrl":null,"url":null,"abstract":"Abstract We construct a metrizable semitopological semilattice X whose partial order P = {(x, y) ∈ X × X : xy = x} is a non-closed dense subset of X × X. As a by-product we find necessary and sufficient conditions for the existence of a (metrizable) Hausdorff topology on a set, act, semigroup or semilattice, having a prescribed countable family of convergent sequences.","PeriodicalId":30611,"journal":{"name":"Topological Algebra and its Applications","volume":"8 1","pages":"67 - 75"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/taa-2020-0006","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topological Algebra and its Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/taa-2020-0006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 5
Abstract
Abstract We construct a metrizable semitopological semilattice X whose partial order P = {(x, y) ∈ X × X : xy = x} is a non-closed dense subset of X × X. As a by-product we find necessary and sufficient conditions for the existence of a (metrizable) Hausdorff topology on a set, act, semigroup or semilattice, having a prescribed countable family of convergent sequences.