Comparison of the histogram of oriented gradient, GLCM, and shape feature extraction methods for breast cancer classification using SVM

Hanimatim Mu'jizah, D. C. R. Novitasari
{"title":"Comparison of the histogram of oriented gradient, GLCM, and shape feature extraction methods for breast cancer classification using SVM","authors":"Hanimatim Mu'jizah, D. C. R. Novitasari","doi":"10.14710/JTSISKOM.2021.14104","DOIUrl":null,"url":null,"abstract":"Breast cancer originates from the ducts or lobules of the breast and is the second leading cause of death after cervical cancer. Therefore, early breast cancer screening is required, one of which is mammography. Mammography images can be automatically identified using Computer-Aided Diagnosis by leveraging machine learning classifications. This study analyzes the Support Vector Machine (SVM) in classifying breast cancer. It compares the performance of three features extraction methods used in SVM, namely Histogram of Oriented Gradient (HOG), GLCM, and shape feature extraction. The dataset consists of 320 mammogram image data from MIAS containing 203 normal images and 117 abnormal images. Each extraction method used three kernels, namely Linear, Gaussian, and Polynomial. The shape feature extraction-SVM using Linear kernel shows the best performance with an accuracy of 98.44 %, sensitivity of 100 %, and specificity of 97.50 %.","PeriodicalId":56231,"journal":{"name":"Jurnal Teknologi dan Sistem Komputer","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Teknologi dan Sistem Komputer","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14710/JTSISKOM.2021.14104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Breast cancer originates from the ducts or lobules of the breast and is the second leading cause of death after cervical cancer. Therefore, early breast cancer screening is required, one of which is mammography. Mammography images can be automatically identified using Computer-Aided Diagnosis by leveraging machine learning classifications. This study analyzes the Support Vector Machine (SVM) in classifying breast cancer. It compares the performance of three features extraction methods used in SVM, namely Histogram of Oriented Gradient (HOG), GLCM, and shape feature extraction. The dataset consists of 320 mammogram image data from MIAS containing 203 normal images and 117 abnormal images. Each extraction method used three kernels, namely Linear, Gaussian, and Polynomial. The shape feature extraction-SVM using Linear kernel shows the best performance with an accuracy of 98.44 %, sensitivity of 100 %, and specificity of 97.50 %.
基于支持向量机的定向梯度直方图、GLCM和形状特征提取方法在癌症分类中的比较
癌症起源于乳腺导管或小叶,是仅次于癌症的第二大死亡原因。因此,需要对癌症进行早期筛查,其中之一就是乳房X光检查。利用机器学习分类,可以使用计算机辅助诊断自动识别乳腺造影图像。本研究分析了支持向量机在癌症分类中的应用。比较了支持向量机中使用的三种特征提取方法,即定向梯度直方图(HOG)、GLCM和形状特征提取的性能。该数据集由来自MIAS的320个乳房X光图像数据组成,包含203个正常图像和117个异常图像。每种提取方法都使用三个核,即线性、高斯和多项式。使用线性核的形状特征提取SVM表现出最好的性能,准确率为98.44%,灵敏度为100%,特异性为97.50%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
6
审稿时长
6 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信