{"title":"Influence of In-Situ Annealing of Si-Rich Silicon Carbide Thin Films","authors":"S. Baskar, P. Nalini","doi":"10.18311/JSST/2018/20097","DOIUrl":null,"url":null,"abstract":"Si-rich Silicon carbide thin films have grown popularity in the past decade for various opto-electronic applications. Post processing of these thin films at temperature higher than 1000 o C usually lead to phase transformations to form Si nanoclusters embedded in amorphous SiC deposited by sputtering on thin films. However, the processing technique is crucial to avoid contaminants, and obtain good quality films. Therefore, a novel in-situ annealing approach within the deposition chamber is carried out at temperatures lower than usual. The influence of in-situ annealing on the material property is meticulously studied by means of Spectroscopic Ellipsometry (SE), Diffused Reflectance Spectroscopy (DRS), and Fourier Transform Infrared Spectroscopy (FTIR). In SE, the spectra are fitted using various models; the refractive index values confirm the Si-richness of the film. The band gap (2.5 to 1.5 eV) is extracted from UV spectra using Tauc plot, which confirms the coexistence of the multiphase structure with the possibility of having Si-NC with different dimensions. The results obtained are promising for optoelectronic device applications.","PeriodicalId":17031,"journal":{"name":"Journal of Surface Science and Technology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Surface Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18311/JSST/2018/20097","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 0
Abstract
Si-rich Silicon carbide thin films have grown popularity in the past decade for various opto-electronic applications. Post processing of these thin films at temperature higher than 1000 o C usually lead to phase transformations to form Si nanoclusters embedded in amorphous SiC deposited by sputtering on thin films. However, the processing technique is crucial to avoid contaminants, and obtain good quality films. Therefore, a novel in-situ annealing approach within the deposition chamber is carried out at temperatures lower than usual. The influence of in-situ annealing on the material property is meticulously studied by means of Spectroscopic Ellipsometry (SE), Diffused Reflectance Spectroscopy (DRS), and Fourier Transform Infrared Spectroscopy (FTIR). In SE, the spectra are fitted using various models; the refractive index values confirm the Si-richness of the film. The band gap (2.5 to 1.5 eV) is extracted from UV spectra using Tauc plot, which confirms the coexistence of the multiphase structure with the possibility of having Si-NC with different dimensions. The results obtained are promising for optoelectronic device applications.
期刊介绍:
The Indian Society for Surface Science and Technology is an organization for the cultivation, interaction and dissemination of knowledge in the field of surface science and technology. It also strives to promote Industry-Academia interaction